Integral of Exponential function formula
Formula
$\displaystyle \int{a^{\displaystyle x} \,}dx \,=\, \dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$
Introduction
$a^{\displaystyle x}$ is an exponential function, where $a$ is a constant and $x$ is a variable. The integration of $a^{\displaystyle x}$ with respect to $x$ is expressed in mathematical form as follows.
$\displaystyle \int{a^{\displaystyle x} \,}dx$
The indefinite integral of $e^{\displaystyle x}$ with respect to $x$ is equal to the sum of the natural exponential function and constant of integration.
$\displaystyle \int{e^{\displaystyle x} \,}dx \,=\, e^{\displaystyle x}+c$
Other forms
The indefinite integration of natural exponential function formula can be written in terms of any variable.
$(1) \,\,\,$ $\displaystyle \int{a^{\displaystyle x} \,}dx \,=\, \dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$
$(2) \,\,\,$ $\displaystyle \int{a^{\displaystyle x} \,}dx \,=\, \dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$
$(3) \,\,\,$ $\displaystyle \int{a^{\displaystyle x} \,}dx \,=\, \dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$
Proof
Learn how to derive the indefinite integration rule for the natural exponential function in integral calculus.
