Take two quantities and they are expressed in product form as $m$ and $n$ factors respectively on the basis of a quantity $b$. Similarly, the two quantities are written in exponential notation as $b^{\displaystyle m}$ and $b^{\displaystyle n}$ respectively.
$(1) \,\,\,$ $b^{\displaystyle m}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m \, factors}$
$(2) \,\,\,$ $b^{\displaystyle n}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle n \, factors}$
Now, let’s start deriving the product law of powers with same base in mathematics.
Now, multiply the exponents with same base for obtaining their product.
$\implies$ $b^{\displaystyle m} \times b^{\displaystyle n}$ $\,=\,$ $\Bigg(\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m \, factors}\Bigg)$ $\times$ $\Bigg(\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle n \, factors}\Bigg)$
There are $m$ factors of $b$ in the term $b^{\displaystyle m}$ and $n$ factors of $b$ in the term $b^{\displaystyle n}$. If they both are multiplied, then the total number of factors in their product is equal to $m+n$.
$\implies$ $b^{\displaystyle m} \times b^{\displaystyle n}$ $\,=\,$ $\underbrace{b \times b \times b \times … \times b}_{\displaystyle (m+n) \, factors}$
According to exponentiation, the right-hand side of the equation can be expressed in exponential form.
$\,\,\, \therefore \,\,\,\,\,\,$ $b^{\displaystyle m} \times b^{\displaystyle n} \,\,=\,\, b^{\displaystyle m+n}$
It is proved mathematically that the product of exponents with same base is equal to the sum of the exponents with same base. This property can also be extended to more than two terms as well.
$b^{\displaystyle m} \times b^{\displaystyle n} \times b^{\displaystyle o} \ldots$ $\,\,=\,\,$ $b^{\displaystyle m+n+o \cdots}$
A best free mathematics education website that helps students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
A math help place with list of solved problems with answers and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved