The power rule of exponents reveals that the power of an exponential term is equal to the product of the powers with same base. This property can be proved in algebraic form for using it as a formula in mathematics.

$b$ is a literal number. Assume, it is multiplied by itself $m$ times. The product of them is represented by $b^{\displaystyle m}$ in exponential form.

$b^{\displaystyle m}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m \, factors}$

Multiply the term $b^{\displaystyle m}$ by the same term $n$ times. The product of them is written in exponential notation as ${(b^{\displaystyle m})}^{\displaystyle n}$.

${(b^{\displaystyle m})}^{\displaystyle n}$ $\,=\,$ $\underbrace{b^{\displaystyle m} \times b^{\displaystyle m} \times b^{\displaystyle m} \times \ldots \times b^{\displaystyle m}}_{\displaystyle n \, factors}$

$b$ is a factor in the term $b^{\displaystyle m}$ and the total number of factors in each term is $m$.

$\implies$ ${(b^{\displaystyle m})}^{\displaystyle n} = \underbrace{\underbrace{(b \times b \times b \times \ldots \times b)}_{\displaystyle m \, factors} \times \underbrace{(b \times b \times b \times \ldots \times b)}_{\displaystyle m \, factors} \times \ldots \times \underbrace{(b \times b \times b \times \ldots \times b)}_{\displaystyle m \, factors}}_{\displaystyle n \, factors}$

There are $m$ factors in each term but total $n$ terms are involved in this product. Therefore, the total number of factors in the product of the exponential term ${(b^{\displaystyle m})}^{\displaystyle n}$ is $m \times n$.

$\implies$ ${(b^{\displaystyle m})}^{\displaystyle n}$ $\,=\,$ $\underbrace{b \times b \times b \times b \times \ldots \times b}_{\displaystyle m \times n \, factors}$

$\implies$ ${(b^{\displaystyle m})}^{\displaystyle n}$ $\,=\,$ $\underbrace{b \times b \times b \times b \times \ldots \times b}_{\displaystyle mn \, factors}$

Now, express the product in exponential notation.

$\,\,\, \therefore \,\,\,\,\,\,$ ${(b^{\displaystyle m})}^{\displaystyle n} \,=\, b^{\displaystyle mn}$

Therefore, it is proved that the power of an exponential term is equal to the product of the indices with same base. It is called as the power rule of exponents and used as a formula in mathematics.

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Jan 31, 2023

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved