Math Doubts

Heron’s formula

Formula

$A = \sqrt{s(s-a)(s-b)(s-c)}$

Introduction

A mathematician Heron (or Hero) of Alexandria derived a geometrical proof to express area of a triangle in algebraic form in terms of lengths of three sides and half-perimeter of the triangle. Hence, this formula is called as Heron’s formula or Hero’s formula.

heron's formula triangle

$a$, $b$ and $c$ are lengths of three sides of a triangle and its perimeter is denoted by $2s$.

$2s \,=\, a+b+c$

$\implies$ $s \,=\, \dfrac{a+b+c}{2}$

The area of the triangle is denoted by either $A$ or $\Delta$.

$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

This formula in algebraic form is called as Hero’s (or Heron’s) formula in geometry.

Example

Find area of a triangle, if $a = 5cm$, $b = 6cm$ and $c = 7cm$.

Firstly, find the semi perimeter of the triangle.

$s = \dfrac{5+6+7}{2}$

$\implies$ $s = \dfrac{18}{2}$

$\implies$ $\require{cancel} s = \dfrac{\cancel{18}}{{2}}$

$\implies$ $s = 9cm$

Now, find the area of the triangle.

$A = \sqrt{9(9-5)(9-6)(9-7)}$

$\implies$ $A = \sqrt{9(4)(3)(2)}$

$\implies$ $A = \sqrt{9 \times 4 \times 3 \times 2}$

$\implies$ $A = \sqrt{36 \times 6}$

$\,\,\, \therefore \,\,\,\,\,\,$ $A = 6\sqrt{6} \, cm^2$

Proof

Learn how to derive the hero’s formula in geometrical approach to find the area of a triangle.



Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more