$A = \sqrt{s(s-a)(s-b)(s-c)}$

A mathematician Heron (or Hero) of Alexandria derived a geometrical proof to express area of a triangle in algebraic form in terms of lengths of three sides and half-perimeter of the triangle. Hence, this formula is called as Heron’s formula or Hero’s formula.

$a$, $b$ and $c$ are lengths of three sides of a triangle and its perimeter is denoted by $2s$.

$2s \,=\, a+b+c$

$\implies$ $s \,=\, \dfrac{a+b+c}{2}$

The area of the triangle is denoted by either $A$ or $\Delta$.

$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

This formula in algebraic form is called as Hero’s (or Heron’s) formula in geometry.

Find area of a triangle, if $a = 5cm$, $b = 6cm$ and $c = 7cm$.

Firstly, find the semi perimeter of the triangle.

$s = \dfrac{5+6+7}{2}$

$\implies$ $s = \dfrac{18}{2}$

$\implies$ $\require{cancel} s = \dfrac{\cancel{18}}{{2}}$

$\implies$ $s = 9cm$

Now, find the area of the triangle.

$A = \sqrt{9(9-5)(9-6)(9-7)}$

$\implies$ $A = \sqrt{9(4)(3)(2)}$

$\implies$ $A = \sqrt{9 \times 4 \times 3 \times 2}$

$\implies$ $A = \sqrt{36 \times 6}$

$\,\,\, \therefore \,\,\,\,\,\,$ $A = 6\sqrt{6} \, cm^2$

Learn how to derive the hero’s formula in geometrical approach to find the area of a triangle.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.