$\dfrac{\sin{A}+\cos{A}}{\sin{A}-\cos{A}} = \dfrac{5}{3}$ is the given trigonometric equation and we have to find the value of trigonometric expression $\dfrac{7\tan{A}+2}{2\tan{A}+7}$. The trigonometric expression is in terms of $\tan{A}$ but we don’t know its value. So, it’s essential to find the value of $\tan{A}$ firstly and it can be done by solving the given trigonometric equation.
The trigonometric equation can be solved in two different ways to find the value of $\tan{A}$.
If you are a beginner, you can get the value of $\tan{A}$ by using cross multiplication method.
$\dfrac{\sin{A}+\cos{A}}{\sin{A}-\cos{A}}$ $\,=\,$ $\dfrac{5}{3}$
$\implies$ $3 \times (\sin{A}+\cos{A})$ $\,=\,$ $5 \times (\sin{A}-\cos{A})$
$\implies$ $3\sin{A}+3\cos{A}$ $\,=\,$ $5\sin{A}-5\cos{A}$
$\implies$ $5\cos{A}+3\cos{A}$ $\,=\,$ $5\sin{A}-3\sin{A}$
$\implies$ $8\cos{A}$ $\,=\,$ $2\sin{A}$
$\implies$ $\dfrac{8}{2} \,=\, \dfrac{\sin{A}}{\cos{A}}$
$\implies$ $\dfrac{\sin{A}}{\cos{A}} \,=\, \dfrac{8}{2}$
According to ratio or quotient trigonometric identity of sin and cos functions, the ratio of $\sin{A}$ to $\cos{A}$ is equal to $\tan{A}$.
$\implies$ $\tan{A} \,=\, \require{cancel} \dfrac{\cancel{8}}{\cancel{2}}$
$\,\,\, \therefore \,\,\,\,\,\,$ $\tan{A} \,=\, 4$
The value of $\tan{A}$ is equal to $4$. Now, substitute the value of $\tan{A}$ the trigonometric expression to evaluate it.
If you are an advanced learner, you can solve the trigonometric equation by the componendo and dividendo rule.
$\implies$ $\dfrac{\sin{A}+\cos{A}+\sin{A}-\cos{A}}{\sin{A}+\cos{A}-(\sin{A}-\cos{A})}$ $\,=\,$ $\dfrac{5+3}{5-3}$
$\implies$ $\dfrac{\sin{A}+\sin{A}+\cos{A}-\cos{A}}{\sin{A}+\cos{A}-\sin{A}+\cos{A}}$ $\,=\,$ $\dfrac{8}{2}$
$\implies$ $\dfrac{\sin{A}+\sin{A}+\cos{A}-\cos{A}}{\sin{A}-\sin{A}+\cos{A}+\cos{A}}$ $\,=\,$ $\dfrac{8}{2}$
$\implies$ $\require{cancel} \dfrac{2\sin{A}+\cancel{\cos{A}}-\cancel{\cos{A}}}{\cancel{\sin{A}}-\cancel{\sin{A}}+2\cos{A}}$ $\,=\,$ $\require{cancel} \dfrac{\cancel{8}}{\cancel{2}}$
$\implies$ $\dfrac{2\sin{A}}{2\cos{A}}$ $\,=\,$ $4$
$\implies$ $\require{cancel} \dfrac{\cancel{2}\sin{A}}{\cancel{2}\cos{A}}$ $\,=\,$ $4$
$\implies$ $\dfrac{\sin{A}}{\cos{A}}$ $\,=\,$ $4$
$\,\,\, \therefore \,\,\,\,\,\,$ $\tan{A} \,=\, 4$
It’s true that the value of $\tan{A}$ is equal to $4$.
Substitute the value of $\tan{A}$ in the trigonometric expression and then simplify it mathematically.
$\dfrac{7\tan{A}+2}{2\tan{A}+7}$ $\,=\,$ $\dfrac{7(4)+2}{2(4)+7}$
$=\, \dfrac{28+2}{8+7}$
$=\, \dfrac{30}{15}$
$=\, \require{cancel} \dfrac{\cancel{30}}{\cancel{15}}$
$=\, 2$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved