Math Doubts

Evaluate $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}}$

In this limits problem, $x$ is a variable and $a$ is a constant. The limit of the algebraic function $\dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}$ has to be calculated as $x$ approaches $a$.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}}$

Simplify the Algebraic function

The square root symbol represents an exponent of $\dfrac{1}{2}$ mathematically. So, express square root in its actual form.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x \times x^{\frac{1}{2}}-a \times a^{\frac{1}{2}}}{x-a}}$

In numerator, the bases of factors in each term is same. So, it can be simplified by using product rule of exponents.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{(1+\frac{1}{2})}-a^{(1+\frac{1}{2})}}{x-a}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{\frac{3}{2}}-a^{\frac{3}{2}}}{x-a}}$

Evaluate the Limit of Algebraic function

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{\frac{3}{2}}-a^{\frac{3}{2}}}{x-a}}$

The limit of this algebraic function is same as the limit formula for the algebraic function $\dfrac{x^n-a^n}{x-a}$ as $x$ approaches $a$ formula. As per this limit property, the limit of this algebraic function can be evaluated.

$= \,\,\,$ $\dfrac{3}{2}a^{(\frac{3}{2}-1)}$

$= \,\,\,$ $\dfrac{3}{2}a^{(\frac{3-2}{2})}$

$= \,\,\,$ $\dfrac{3}{2}a^{\frac{1}{2}}$

$= \,\,\,$ $\dfrac{3}{2}\sqrt{a}$

Therefore, it’s evaluated that the limit of the algebraic function $\dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}$ as $x$ approaches $a$ is equal to $\dfrac{3}{2}\sqrt{a}$.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved