Evaluate $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}}$

In this limits problem, $x$ is a variable and $a$ is a constant. The limit of the algebraic function $\dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}$ has to be calculated as $x$ approaches $a$.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}}$

Simplify the Algebraic function

The square root symbol represents an exponent of $\dfrac{1}{2}$ mathematically. So, express square root in its actual form.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x \times x^{\frac{1}{2}}-a \times a^{\frac{1}{2}}}{x-a}}$

In numerator, the bases of factors in each term is same. So, it can be simplified by using product rule of exponents.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{(1+\frac{1}{2})}-a^{(1+\frac{1}{2})}}{x-a}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{\frac{3}{2}}-a^{\frac{3}{2}}}{x-a}}$

Evaluate the Limit of Algebraic function

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{\frac{3}{2}}-a^{\frac{3}{2}}}{x-a}}$

The limit of this algebraic function is same as the limit formula for the algebraic function $\dfrac{x^n-a^n}{x-a}$ as $x$ approaches $a$ formula. As per this limit property, the limit of this algebraic function can be evaluated.

$= \,\,\,$ $\dfrac{3}{2}a^{(\frac{3}{2}-1)}$

$= \,\,\,$ $\dfrac{3}{2}a^{(\frac{3-2}{2})}$

$= \,\,\,$ $\dfrac{3}{2}a^{\frac{1}{2}}$

$= \,\,\,$ $\dfrac{3}{2}\sqrt{a}$

Therefore, it’s evaluated that the limit of the algebraic function $\dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}$ as $x$ approaches $a$ is equal to $\dfrac{3}{2}\sqrt{a}$.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.