In this limits problem, $x$ is a variable and $a$ is a constant. The limit of the algebraic function $\dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}$ has to be calculated as $x$ approaches $a$.
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}}$
The square root symbol represents an exponent of $\dfrac{1}{2}$ mathematically. So, express square root in its actual form.
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x \times x^{\frac{1}{2}}-a \times a^{\frac{1}{2}}}{x-a}}$
In numerator, the bases of factors in each term is same. So, it can be simplified by using product rule of exponents.
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{(1+\frac{1}{2})}-a^{(1+\frac{1}{2})}}{x-a}}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{\frac{3}{2}}-a^{\frac{3}{2}}}{x-a}}$
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^{\frac{3}{2}}-a^{\frac{3}{2}}}{x-a}}$
The limit of this algebraic function is same as the limit formula for the algebraic function $\dfrac{x^n-a^n}{x-a}$ as $x$ approaches $a$ formula. As per this limit property, the limit of this algebraic function can be evaluated.
$= \,\,\,$ $\dfrac{3}{2}a^{(\frac{3}{2}-1)}$
$= \,\,\,$ $\dfrac{3}{2}a^{(\frac{3-2}{2})}$
$= \,\,\,$ $\dfrac{3}{2}a^{\frac{1}{2}}$
$= \,\,\,$ $\dfrac{3}{2}\sqrt{a}$
Therefore, it’s evaluated that the limit of the algebraic function $\dfrac{x\sqrt{x}-a\sqrt{a}}{x-a}$ as $x$ approaches $a$ is equal to $\dfrac{3}{2}\sqrt{a}$.
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved