Math Doubts

Evaluate $\displaystyle \int{x\sin{x}}\,dx$

The indefinite integral of the product of $x$ and sine of angle $x$ should have to be evaluated with respect to $x$ in this indefinite integration question.

integration by parts question problem

In this indefinite integration problem, it is given that two functions $x$ and $\sin{x}$ are multiplied to form a function by their product. The exponent of the variable $x$ can be reduced by the power rule of derivatives. Similarly, the integral of sine function can also be calculated. Therefore, the indefinite integral of the product of $x$ and $\sin{x}$ can be calculated with respect to $x$ by the integration by parts formula.

Find Derivative and Antiderivative of functions

Assume that $u \,=\, x$ and $dv \,=\, \sin{x}\,dx$ by the change of variables technique.

Firstly, differentiate the both sides of the equation $u \,=\, x$ with respect to $x$ to evaluate the differential element $du$.

$\implies$ $\dfrac{d}{dx}{(u)} \,=\, \dfrac{d}{dx}{(x)}$

$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{dx}{dx}$

$\implies$ $\dfrac{du}{dx} \,=\, 1$

$\implies$ $du \,=\, 1 \times dx$

$\,\,\,\therefore\,\,\,\,\,\,$ $du \,=\, dx$

Now, integrate the both sides of the equation $dv \,= \sin{x}\,dx$ to find the variable $v$.

$\implies$ $\displaystyle \int{}dv \,=\, \int{\sin{x}}\,dx$

$\implies$ $\displaystyle \int{1} \times dv \,=\, \int{\sin{x}}\,dx$

According to the integral of one rule, the derivative of one with respect to $v$ is $v$, and the integral of sine of angle $x$ with respect to $x$ is negative of cosine of angle $x$ as per the integral rule of sine function.

$\,\,\,\therefore\,\,\,\,\,\,$ $v \,=\, -\cos{x}$

Expand Indefinite integral by Integration by parts

Now, write the integration by parts rule in mathematical form.

$\displaystyle \int{u}\,dv$ $\,=\,$ $uv$ $-$ $\displaystyle \int{v}\,du$

We have known already that

$(1).\,\,$ $u \,=\, x$

$(2).\,\,$ $v \,=\, -\cos{x}$

$(3).\,\,$ $du \,=\, dx$

$(4).\,\,$ $dv \,=\, \sin{x}\,dx$

It is time to substitute them in the integration by parts formula to expand the integral of the product of $x$ and $\sin{x}$.

$\implies$ $\displaystyle \int{x\sin{x}}\,dx$ $\,=\,$ $x(-\cos{x})$ $-$ $\displaystyle \int{(-\cos{x})}\,dx$

Evaluate the Indefinite integral of the function

The indefinite integral of the product of $x$ and $\sin{x}$ functions with respect to $x$ can be calculated by evaluating its expansion. So, let us concentrate on every part in the expression on the right hand side of the equation.

$\,\,=\,\,$ $x(-\cos{x})$ $-$ $\displaystyle \int{(-\cos{x})}\,dx$

$\,\,=\,\,$ $-x\cos{x}$ $+$ $\displaystyle \int{\cos{x}}\,dx$

According to the integral rule of cos function, the indefinite integral of cosine of angle $x$ can be evaluated with respect to $x$.

$\,\,=\,\,$ $-x\cos{x}$ $+$ $\sin{x}$ $+$ $c$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved