The variable $x$ and natural exponential function $e^x$ formed an algebraic function by their product, and we have to evaluate the indefinite integration of the function $xe^x$ with respect to $x$ in calculus.

$\displaystyle \int{xe^x \,} dx$

In this integral problem, we can notice that

- The algebraic functions $x$ and $e^x$ are involved in multiplication.
- The power of the algebraic function $x$ can reduced by differentiation.
- The integration of the natural exponential function $e^x$ can be evaluated directly.

The indefinite integration of the given algebraic function can be evaluated only by the integration by parts method.

Take, $\displaystyle \int{xe^x \,} dx$ $\,=\,$ $\displaystyle \int{u}dv$

In this indefinite integration problem, we use the power reduction technique for solving this problem. So, we must take $u = x$ and $dv = e^x dx$

Now, we have to evaluate the differential element $du$ by differentiation and the variable $v$ by the integration.

$u = x$

$\implies$ $\dfrac{du}{dx} = \dfrac{dx}{dx}$

$\,\,\, \therefore \,\,\,\,\,\,$ $du = dx$

$dv = e^x dx$

Now, solve the differential equation by using the integration rule of natural exponential function.

$\implies$ $\displaystyle \int{\,}dv = \int{e^x \,}dx$

$\implies$ $\displaystyle \int{\,}dv = \int{e^x \,}dx$

$\implies$ $v+c = e^x+c$

$\,\,\, \therefore \,\,\,\,\,\,$ $v = e^x$

Now, substitute the values of the variables and differentials in the formula of the integration of parts for evaluating the indefinite integration of the given algebraic function mathematically.

$\displaystyle \int{u}dv$ $\,=\,$ $uv$ $-$ $\displaystyle \int{v}du$

$\implies$ $\displaystyle \int{xe^x \,}dx$ $\,=\,$ $x \times e^x$ $-$ $\displaystyle \int{e^x \,}dx$

$\implies$ $\displaystyle \int{xe^x \,}dx$ $\,=\,$ $xe^x$ $-$ $\displaystyle \int{e^x \,}dx$

$\implies$ $\displaystyle \int{xe^x \,}dx$ $\,=\,$ $xe^x-e^x+c$

$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \int{xe^x \,}dx$ $\,=\,$ $e^x(x-1)+c$

Latest Math Topics

Apr 18, 2022

Apr 14, 2022

Apr 05, 2022

Mar 18, 2022

Mar 05, 2022

Latest Math Problems

Apr 06, 2022

Mar 22, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved