Math Doubts

Proof of Distributive property of Multiplication over Subtraction

The distributive property of multiplication over subtraction can be proved in algebraic form by the geometrical method. Actually, it is derived in mathematics by the area of a rectangle.

Evaluate the Area of Rectangle

area of rectangle for distributive law

Consider a rectangle but its dimensions are unknown. So, take the width and length of the rectangle as $a$ and $b$ respectively. Now, calculate the area of this rectangle in algebraic form.

$Area \,=\, a \times b$

$\implies$ $Area \,=\, a.b$

$\,\,\, \therefore \,\,\,\,\,\,$ $Area \,=\, ab$

Remember the area of this rectangle and it is used later in proving the distributive property.

Find the of Areas of Rectangles

Divide the rectangle across its length at a point as two different small rectangles.

areas of rectangles for distributive law
  1. If the length of one rectangle is $c$, then the length of the second rectangle is equal to $b-c$.
  2. However, the width of each rectangle is same and it is $a$.

Calculate the area of first rectangle.
$Area \,=\, (b-c) \times a$
$\implies$ $Area \,=\, a \times (b-c)$
$\,\,\, \therefore \,\,\,\,\,\,$ $Area \,=\, a(b-c)$

Calculate the area of second rectangle.
$Area \,=\, c \times a$
$\implies$ $Area \,=\, a \times c$
$\,\,\, \therefore \,\,\,\,\,\,$ $Area \,=\, ac$

Relationship between the Areas of Rectangles

Geometrically, the first rectangle can be obtained by subtracting the second rectangle from the actual rectangle. So, the area first rectangle is equal to the subtraction of the area of second rectangle from the area of main rectangle.

$\,\,\, \therefore \,\,\,\,\,\,$ $a(b-c) \,=\, ab-ac$

You can derive it in another way if you are confused with the direct geometrical approach.

The area of the rectangle is $ab$ and it is divided as two rectangles whose areas $a(b-c)$ and $ac$. So, the area of the rectangle is equal to the sum of the areas of the small rectangles geometrically.

$ab$ $\,=\,$ $a(b-c)+ac$

According to Transposing method, the term $ac$ can be shifted to left-hand side of the equation from right-hand side.

$\implies$ $ab-ac \,=\, a(b-c)$

$\,\,\, \therefore \,\,\,\,\,\,$ $a(b-c) \,=\, ab-ac$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved