# Derivative Rules of Inverse trigonometric functions

The inverse trigonometric functions are involved in differentiation in some cases. Hence, it is essential to learn the derivative formulas for evaluating the derivative of every inverse trigonometric function. Here, the list of derivatives of inverse trigonometric functions with proofs in differential calculus.

### Inverse Sine function

$\dfrac{d}{dx}{\,(\sin^{-1}{x})} \,=\, \dfrac{1}{\sqrt{1-x^2}}$

### Inverse Cosine function

$\dfrac{d}{dx}{\,(\cos^{-1}{x})} \,=\, -\dfrac{1}{\sqrt{1 -x^2}}$

### Inverse Tangent function

$\dfrac{d}{dx}{\,(\tan^{-1}{x})} \,=\, \dfrac{1}{1+x^2}$

### Inverse Cotangent function

$\dfrac{d}{dx}{\,(\cot^{-1}{x})} \,=\, -\dfrac{1}{1+x^2}$

### Inverse Secant function

$\dfrac{d}{dx}{\,(\sec^{-1}{x})} \,=\, \dfrac{1}{|x|\sqrt{x^2-1}}$

### Inverse Cosecant function

$\dfrac{d}{dx}{\,(\csc^{-1}{x})} \,=\, -\dfrac{1}{|x|\sqrt{x^2-1}}$

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.