Math Doubts

Derivative Rules of Inverse trigonometric functions

The inverse trigonometric functions are involved in differentiation in some cases. Hence, it is essential to learn the derivative formulas for evaluating the derivative of every inverse trigonometric function. Here, the list of derivatives of inverse trigonometric functions with proofs in differential calculus.

Inverse Sine function

$\dfrac{d}{dx}{\,(\sin^{-1}{x})} \,=\, \dfrac{1}{\sqrt{1-x^2}}$

Inverse Cosine function

$\dfrac{d}{dx}{\,(\cos^{-1}{x})} \,=\, -\dfrac{1}{\sqrt{1 -x^2}}$

Inverse Tangent function

$\dfrac{d}{dx}{\,(\tan^{-1}{x})} \,=\, \dfrac{1}{1+x^2}$

Inverse Cotangent function

$\dfrac{d}{dx}{\,(\cot^{-1}{x})} \,=\, -\dfrac{1}{1+x^2}$

Inverse Secant function

$\dfrac{d}{dx}{\,(\sec^{-1}{x})} \,=\, \dfrac{1}{|x|\sqrt{x^2-1}}$

Inverse Cosecant function

$\dfrac{d}{dx}{\,(\csc^{-1}{x})} \,=\, -\dfrac{1}{|x|\sqrt{x^2-1}}$

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more