$\dfrac{d}{dx}{\,\sec^{-1}{x}} \,=\, \dfrac{1}{|x|\sqrt{x^2-1}}$

Let $x$ represents a variable and also a real number, the inverse secant function is written as $\sec^{-1}{(x)}$ or $\operatorname{arcsec}{(x)}$ in inverse trigonometry. In differential calculus, the derivative or differentiation of the secant inverse function with respect to $x$ is written in two mathematical forms as follows.

$(1) \,\,\,$ $\dfrac{d}{dx}{\,\Big(\sec^{-1}{(x)}\Big)}$

$(2) \,\,\,$ $\dfrac{d}{dx}{\,\Big(\operatorname{arcsec}{(x)}\Big)}$

The derivative of the inverse secant function with respect to $x$ is equal to the reciprocal of product of modulus of $x$ and square root of the subtraction of one from $x$ squared.

$\implies$ $\dfrac{d}{dx}{\,\Big(\sec^{-1}{(x)}\Big)}$ $\,=\,$ $\dfrac{1}{|x|\sqrt{x^2-1}}$

The derivative of secant inverse function can be written in terms of any variable. The following are some examples to learn how to write the derivative rule of inverse secant function in differential calculus.

$(1) \,\,\,$ $\dfrac{d}{dz}{\,\sec^{-1}{z}} \,=\, \dfrac{1}{|z|\sqrt{z^2-1}}$

$(2) \,\,\,$ $\dfrac{d}{dr}{\,\sec^{-1}{r}} \,=\, \dfrac{1}{|r|\sqrt{r^2-1}}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\,\sec^{-1}{y}} \,=\, \dfrac{1}{|y|\sqrt{y^2-1}}$

Learn how to derive the differentiation formula for the inverse secant function by first principle.

Latest Math Topics

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Jul 29, 2022

Jul 17, 2022

Jun 02, 2022

Apr 06, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved