$\dfrac{d}{dx}{\, \sin^{-1}{x}} \,=\, \dfrac{1}{\sqrt{1-x^2}}$

Let $x$ be a variable. The inverse sine function is written as $\sin^{-1}{(x)}$ or $\arcsin{(x)}$ in inverse trigonometry. In differential calculus, the differentiation of the sin inverse function is written in mathematical form as follows.

$(1) \,\,\,$ $\dfrac{d}{dx}{\, \Big(\sin^{-1}{(x)}\Big)}$

$(2) \,\,\,$ $\dfrac{d}{dx}{\, \Big(\arcsin{(x)}\Big)}$

The differentiation of the inverse sin function with respect to $x$ is equal to the reciprocal of the square root of the subtraction of square of $x$ from one.

$\implies$ $\dfrac{d}{dx}{\, \Big(\sin^{-1}{(x)}\Big)}$ $\,=\,$ $\dfrac{1}{\sqrt{1-x^2}}$

The derivative of the sin inverse function can be written in terms of any variable. Here, some of the examples are given to learn how to express the formula for the derivative of inverse sine function in differential calculus.

$(1) \,\,\,$ $\dfrac{d}{dy}{\, \Big(\sin^{-1}{(y)}\Big)}$ $\,=\,$ $\dfrac{1}{\sqrt{1-y^2}}$

$(2) \,\,\,$ $\dfrac{d}{dm}{\, \Big(\sin^{-1}{(m)}\Big)}$ $\,=\,$ $\dfrac{1}{\sqrt{1-m^2}}$

$(3) \,\,\,$ $\dfrac{d}{dz}{\, \Big(\sin^{-1}{(z)}\Big)}$ $\,=\,$ $\dfrac{1}{\sqrt{1-z^2}}$

Learn how to derive the derivative of the inverse sine function formula by first principle.

Latest Math Topics

Apr 18, 2022

Apr 14, 2022

Apr 05, 2022

Mar 18, 2022

Mar 05, 2022

Latest Math Problems

Apr 06, 2022

Mar 22, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved