# Proof of Power Rule of Derivatives

$x$ is a variable and $n$ is a constant. The power rule of differentiation can be derived from first principle in differential calculus to find the derivative of exponential function $x^{\displaystyle n}$ with respect to $x$.

### Write Derivative of function in Limit form

Write the derivative of a function in limits form by the definition of the derivative.

$\dfrac{d}{dx}{\, f(x)}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f(x+\Delta x)-f(x)}{\Delta x}}$

It can be written in terms of $h$ by taking $\Delta x$ equals to $h$.

$\implies$ $\dfrac{d}{dx}{\, f(x)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f(x+h)-f(x)}{h}}$

Take $f{(x)} \,=\, x^{\displaystyle n}$, then $f{(x+h)} \,=\, {(x+h)}^{\displaystyle n}$. Now, substitute them in the above formula to get started deriving this formula from first principle.

$\implies \dfrac{d}{dx}{\, (x^{\displaystyle n})}$ $\,=\,$ $\large \displaystyle \lim_{h \,\to 0} \normalsize \dfrac{{(x+h)}^{\displaystyle n}-x^{\displaystyle n}}{h}$

### Simplify the Algebraic function

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to 0} \normalsize \dfrac{{(x+h)}^{\displaystyle n}-x^{\displaystyle n}}{h}$

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to 0} \normalsize \dfrac{x^{\displaystyle n}{\Big(1+\dfrac{h}{x}\Big)}^{\displaystyle n}-x^{\displaystyle n}}{h}$

Look at the algebraic expression in the numerator. An exponential function $x^{\displaystyle n}$ can be taken common from both terms.

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to 0} \normalsize \dfrac{x^{\displaystyle n}\Bigg[{\Big(1+\dfrac{h}{x}\Big)}^{\displaystyle n}-1\Bigg]}{h}$

Now, factorize this algebraic function as two functions.

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to 0} \normalsize \Bigg(\dfrac{x^{\displaystyle n}}{h} \times {\Bigg[{\Big(1+\dfrac{h}{x}\Big)}^{\displaystyle n}-1\Bigg]\Bigg)}$

### Evaluate Binomial function by Binomial Theorem

The function ${\Big(1+\dfrac{h}{x}\Big)}^{\displaystyle n}$ can be expanded by the binomial theorem.

According to Binomial Theorem, we know that

${(1+x)}^{\displaystyle n}$ $\,=\,$ $1$ $+$ $\dfrac{nx}{1!}$ $+$ $\dfrac{n(n-1)}{2!}x^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}x^3$ $+$ $\cdots$

Now, replace $x$ by the fraction $\dfrac{h}{x}$ for expanding the function ${\Big(1+\dfrac{h}{x}\Big)}^{\displaystyle n}$.

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to\, 0} \normalsize \Bigg(\dfrac{x^{\displaystyle n}}{h}$ $\times$ $\Bigg[1$ $+$ $\dfrac{n}{1!}{\Big(\dfrac{h}{x}\Big)}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{h}{x}\Big)}^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{h}{x}\Big)}^3$ $+$ $\cdots -1\Bigg]\Bigg)$

Now, simplify the algebraic expression.

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to\, 0} \normalsize \Bigg(\dfrac{x^{\displaystyle n}}{h}$ $\times$ $\Bigg[\require{cancel} \cancel{1}$ $+$ $\dfrac{n}{1!}{\Big(\dfrac{h}{x}\Big)}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{h}{x}\Big)}^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{h}{x}\Big)}^3$ $+$ $\cdots -\require{cancel} \cancel{1}\Bigg]\Bigg)$

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to\, 0} \normalsize \Bigg(\dfrac{x^{\displaystyle n}}{h}$ $\times$ $\Bigg[\dfrac{n}{1!}{\Big(\dfrac{h}{x}\Big)}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{h}{x}\Big)}^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{h}{x}\Big)}^3$ $+$ $\cdots \Bigg]\Bigg)$

The fraction $\dfrac{h}{x}$ is a common factor in all the terms of the infinite series. So, take it out common from all the terms.

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to\, 0} \normalsize \Bigg(\dfrac{x^{\displaystyle n}}{h}$ $\times$ ${\Big(\dfrac{h}{x}\Big)}\Bigg[\dfrac{n}{1!}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{h}{x}\Big)}$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{h}{x}\Big)}^2$ $+$ $\cdots \Bigg]\Bigg)$

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to\, 0} \normalsize \Bigg(\dfrac{x^{\displaystyle n} \times h}{h \times x}$ $\times$ $\Bigg[\dfrac{n}{1!}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{h}{x}\Big)}$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{h}{x}\Big)}^2$ $+$ $\cdots \Bigg]\Bigg)$

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to\, 0} \normalsize \require{cancel} \Bigg(\dfrac{x^{\displaystyle n} \times \cancel{h}}{\cancel{h} \times x}$ $\times$ $\Bigg[\dfrac{n}{1!}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{h}{x}\Big)}$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{h}{x}\Big)}^2$ $+$ $\cdots \Bigg]\Bigg)$

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to\, 0} \normalsize \Bigg(\dfrac{x^{\displaystyle n}}{x}$ $\times$ $\Bigg[\dfrac{n}{1!}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{h}{x}\Big)}$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{h}{x}\Big)}^2$ $+$ $\cdots \Bigg]\Bigg)$

According to quotient rule of exponents with same base rule, find the quotient by diving $x^{\displaystyle n}$ with $x$.

$=\,\,\,$ $\large \displaystyle \lim_{h \,\to\, 0} \normalsize \Bigg(x^{{\displaystyle n}-1}$ $\times$ $\Bigg[\dfrac{n}{1!}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{h}{x}\Big)}$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{h}{x}\Big)}^2$ $+$ $\cdots \Bigg]\Bigg)$

### Evaluate the Limit of the infinite series

Now, find the limit of the infinite series as h approaches zero by the direct substitution method.

$=\,\,\,$ $x^{{\displaystyle n}-1}$ $\times$ $\Bigg[\dfrac{n}{1!}$ $+$ $\dfrac{n(n-1)}{2!}{\Big(\dfrac{0}{x}\Big)}$ $+$ $\dfrac{n(n-1)(n-2)}{3!}{\Big(\dfrac{0}{x}\Big)}^2$ $+$ $\cdots \Bigg]$

$=\,\,\,$ $x^{{\displaystyle n}-1}$ $\times$ $\Big[\dfrac{n}{1}$ $+$ $0$ $+$ $0$ $+$ $\cdots \Big]$

$=\,\,\,$ $x^{{\displaystyle n}-1}$ $\times$ $[n]$

$\,\,\, \therefore \,\,\,\,\,\, \dfrac{d}{dx}{\, (x^{\displaystyle n})}$ $\,=\,$ $nx^{{\displaystyle n}-1}$

Thus, the power rule of derivatives is derived in differential calculus by first principle.

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.