Math Doubts

Derivative of Exponential function formula

Formula

$\dfrac{d}{dx}{\, (a^{\displaystyle x})} \,=\, a^{\displaystyle x}\log_{e}{a}$

The differentiation of exponential function with respect to a variable is equal to the product of exponential function and natural logarithm of base of exponential function. It is read as the derivative of $a$ raised to the power of $x$ with respect to $x$ is equal to the product of $a^{\displaystyle x}$ and $\ln{a}$.

Introduction

Take, $a$ is a constant and $x$ is a variable, then the exponential function is written as $a^{\displaystyle x}$ in mathematical form. The derivative of the $a^{\displaystyle x}$ function with respect to $x$ is written mathematically as follows.

$\dfrac{d}{dx}{\, (a^{\displaystyle x})}$

In differential calculus, the differentiation of the $a^{\displaystyle x}$ function with respect to $x$ is also written as $\dfrac{d{\,(a^{\displaystyle x})}}{dx}$ and is also simply written as ${(a^{\displaystyle x})}’$ in mathematics.

Other form

The formula for the derivative of exponential function can be written in terms of any variable.

$(1) \,\,\,$ $\dfrac{d}{ds}{\, (c^{\displaystyle s})} \,=\, c^{\displaystyle s}\log_{e}{c}$

$(2) \,\,\,$ $\dfrac{d}{dl}{\, (g^{\displaystyle l})} \,=\, g^{\displaystyle l}\log_{e}{l}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, (m^{\displaystyle y})} \,=\, m^{\displaystyle y}\log_{e}{m}$

Proof

Learn how to derive the differentiation of $a^{\displaystyle x}$ formula with respect to $x$ in differential calculus from first principle.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved