Math Doubts

Proof of Derivative of constant

Take, $c$ represents a constant and $x$ represents a variable. The derivative of constant $c$ with respect to $x$ is written in the following mathematical form in differential calculus.

$\dfrac{d}{dx}{\, (c)}$

Write Derivative of function in Limits form

According to definition of the derivative, the differentiation of $f{(x)}$ with respect to $x$ can be written in limit operation form.

$\dfrac{d}{dx}{\, f{(x)}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to \, 0}{\normalsize \dfrac{f{(x+\Delta x)}-f{(x)}}{\Delta x}}$

Take $f{(x)} \,=\, c$, then $f{(x+\Delta x)} \,=\, c$. Now, substitute them in this formula.

$\implies$ $\dfrac{d}{dx}{\, (c)}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to \, 0}{\normalsize \dfrac{c-c}{\Delta x}}$

Now, take $\Delta x = h$ and express the equation in terms of $h$ from $\Delta x$.

$\implies$ $\dfrac{d}{dx}{\, (c)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to \, 0}{\normalsize \dfrac{c-c}{h}}$

Evaluate the Derivative of constant

There are two terms in the numerator and they both are equal. So, the subtraction of them is equal to zero.

$\implies$ $\dfrac{d}{dx}{\, (c)}$ $\,=\,$ $\require{cancel} \displaystyle \large \lim_{h \,\to \, 0}{\normalsize \dfrac{\cancel{c}-\cancel{c}}{h}}$

$\implies$ $\dfrac{d}{dx}{\, (c)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to \, 0}{\normalsize \Big(\dfrac{0}{h}\Big)}$

The quotient of zero by $h$ is zero mathematically.

$\implies$ $\dfrac{d}{dx}{\, (c)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to \, 0}{\normalsize (0)}$

Now, calculate the limit of zero as $h$ approaches zero. In this case, there is no $h$ term in the function and the value of the function is zero. Therefore, the differentiation of a constant with respect to a variable is equal to zero.

$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{d}{dx}{\, (c)}$ $\,=\,$ $0$

In this way, the derivative of a constant rule is derived by first principle in the differential calculus.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved