$\dfrac{d}{dx}{\, \sinh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{\sqrt{x^2+1}}$

The inverse hyperbolic sine function is written as $\sinh^{-1}{(x)}$ or $\operatorname{arcsinh}{(x)}$ in mathematics when the $x$ represents a variable. The derivative of the inverse hyperbolic sine function with respect to $x$ is written in the following mathematical forms.

$(1).\,\,\,$ $\dfrac{d}{dx}{\, (\sinh^{-1}{x})}$

$(2).\,\,\,$ $\dfrac{d}{dx}{\, (\operatorname{arcsinh}{x})}$

Mathematically, the derivative of the inverse hyperbolic sine function is simply written as $(\sinh^{-1}{x})’$ or $(\operatorname{arcsinh}{x})’$ in differential calculus.

The differentiation of the hyperbolic inverse sin function with respect to $x$ is equal to multiplicative inverse of square root of sum of $1$ and $x$ squared.

$\implies$ $\dfrac{d}{dx}{\, \sinh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{\sqrt{x^2+1}}$

In mathematics, the derivative of inverse hyperbolic sine function can also be written in terms of any variable.

$(1) \,\,\,$ $\dfrac{d}{db}{\, \sinh^{-1}{b}}$ $\,=\,$ $\dfrac{1}{\sqrt{b^2+1}}$

$(2) \,\,\,$ $\dfrac{d}{dl}{\, \sinh^{-1}{l}}$ $\,=\,$ $\dfrac{1}{\sqrt{l^2+1}}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, \sinh^{-1}{y}}$ $\,=\,$ $\dfrac{1}{\sqrt{y^2+1}}$

Learn how to prove the differentiation formula of hyperbolic inverse sine function by the first principle of differentiation.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.