Math Doubts

Derivative Rule of Inverse Hyperbolic Cosine function

Formula

$\dfrac{d}{dx}{\, \cosh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{\sqrt{x^2-1}}$

Introduction

The inverse hyperbolic cosine function is expressed as $\cosh^{-1}{(x)}$ or $\operatorname{arccosh}{(x)}$ mathematically when the $x$ denotes a variable. The derivative of the inverse hyperbolic cosine function with respect to $x$ is expressed in the below mathematical forms.

$(1).\,\,\,$ $\dfrac{d}{dx}{\, (\cosh^{-1}{x})}$

$(2).\,\,\,$ $\dfrac{d}{dx}{\, (\operatorname{arccosh}{x})}$

In mathematics, the derivative of inverse hyperbolic cosine function is written as $(\cosh^{-1}{x})’$ or $(\operatorname{arccosh}{x})’$ simply in differential calculus.

The differentiation of hyperbolic inverse cos function with respect to $x$ is equal to reciprocal of the square root of difference of $1$ from $x$ squared.

$\implies$ $\dfrac{d}{dx}{\, \cosh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{\sqrt{x^2-1}}$

Other forms

The derivative of inverse hyperbolic cosine function can also be written in terms of any variable in mathematics.

Example

$(1) \,\,\,$ $\dfrac{d}{de}{\, \cosh^{-1}{e}}$ $\,=\,$ $\dfrac{1}{\sqrt{e^2-1}}$

$(2) \,\,\,$ $\dfrac{d}{dm}{\, \cosh^{-1}{m}}$ $\,=\,$ $\dfrac{1}{\sqrt{m^2-1}}$

$(3) \,\,\,$ $\dfrac{d}{dz}{\, \cosh^{-1}{z}}$ $\,=\,$ $\dfrac{1}{\sqrt{z^2-1}}$

Proof

Learn how to prove differentiation rule of hyperbolic inverse cosine function by the first principle of differentiation.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved