$\dfrac{d}{dx}{\, \cosh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{\sqrt{x^2-1}}$

The inverse hyperbolic cosine function is expressed as $\cosh^{-1}{(x)}$ or $\operatorname{arccosh}{(x)}$ mathematically when the $x$ denotes a variable. The derivative of the inverse hyperbolic cosine function with respect to $x$ is expressed in the below mathematical forms.

$(1).\,\,\,$ $\dfrac{d}{dx}{\, (\cosh^{-1}{x})}$

$(2).\,\,\,$ $\dfrac{d}{dx}{\, (\operatorname{arccosh}{x})}$

In mathematics, the derivative of inverse hyperbolic cosine function is written as $(\cosh^{-1}{x})’$ or $(\operatorname{arccosh}{x})’$ simply in differential calculus.

The differentiation of hyperbolic inverse cos function with respect to $x$ is equal to reciprocal of the square root of difference of $1$ from $x$ squared.

$\implies$ $\dfrac{d}{dx}{\, \cosh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{\sqrt{x^2-1}}$

The derivative of inverse hyperbolic cosine function can also be written in terms of any variable in mathematics.

$(1) \,\,\,$ $\dfrac{d}{de}{\, \cosh^{-1}{e}}$ $\,=\,$ $\dfrac{1}{\sqrt{e^2-1}}$

$(2) \,\,\,$ $\dfrac{d}{dm}{\, \cosh^{-1}{m}}$ $\,=\,$ $\dfrac{1}{\sqrt{m^2-1}}$

$(3) \,\,\,$ $\dfrac{d}{dz}{\, \cosh^{-1}{z}}$ $\,=\,$ $\dfrac{1}{\sqrt{z^2-1}}$

Learn how to prove differentiation rule of hyperbolic inverse cosine function by the first principle of differentiation.

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved