$\dfrac{d}{dx}{\, \cosh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{\sqrt{x^2-1}}$

The inverse hyperbolic cosine function is expressed as $\cosh^{-1}{(x)}$ or $\operatorname{arccosh}{(x)}$ mathematically when the $x$ denotes a variable. The derivative of the inverse hyperbolic cosine function with respect to $x$ is expressed in the below mathematical forms.

$(1).\,\,\,$ $\dfrac{d}{dx}{\, (\cosh^{-1}{x})}$

$(2).\,\,\,$ $\dfrac{d}{dx}{\, (\operatorname{arccosh}{x})}$

In mathematics, the derivative of inverse hyperbolic cosine function is written as $(\cosh^{-1}{x})’$ or $(\operatorname{arccosh}{x})’$ simply in differential calculus.

The differentiation of hyperbolic inverse cos function with respect to $x$ is equal to reciprocal of the square root of difference of $1$ from $x$ squared.

$\implies$ $\dfrac{d}{dx}{\, \cosh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{\sqrt{x^2-1}}$

The derivative of inverse hyperbolic cosine function can also be written in terms of any variable in mathematics.

$(1) \,\,\,$ $\dfrac{d}{de}{\, \cosh^{-1}{e}}$ $\,=\,$ $\dfrac{1}{\sqrt{e^2-1}}$

$(2) \,\,\,$ $\dfrac{d}{dm}{\, \cosh^{-1}{m}}$ $\,=\,$ $\dfrac{1}{\sqrt{m^2-1}}$

$(3) \,\,\,$ $\dfrac{d}{dz}{\, \cosh^{-1}{z}}$ $\,=\,$ $\dfrac{1}{\sqrt{z^2-1}}$

Learn how to prove differentiation rule of hyperbolic inverse cosine function by the first principle of differentiation.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.