The difference rule of derivatives is actually derived in differential calculus from first principle. For example, $f{(x)}$ and $g{(x)}$ are two differentiable functions and the difference of them is written as $f{(x)}-g{(x)}$. The derivative of difference of two functions with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, \Big(f{(x)}-g{(x)}\Big)}$

Take $m{(x)} = f{(x)}-g{(x)}$ and then $m{(x+\Delta x)} = f{(x+\Delta x)}-g{(x+\Delta x)}$

According to definition of the derivative, write the derivative of the function $m{(x)}$ with respect to $x$ in limiting operation.

$\dfrac{d}{dx}{\, \Big(m{(x)}\Big)}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{m{(x+\Delta x)}-m{(x)}}{\Delta x}}$

Replace the actual functions of $m{(x)}$ and $m{(x+\Delta x)}$.

$\implies$ $\dfrac{d}{dx}{\, \Big(f{(x)}-g{(x)}\Big)}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Big(f{(x+\Delta x)}-g{(x+\Delta x)}\Big)-\Big(f{(x)}-g{(x)}\Big)}{\Delta x}}$

Now, take $\Delta x = h$ and start simplifying this function for deriving the derivative of difference of two functions by first principle.

$=\,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\Big(f{(x+h)}-g{(x+h)}\Big)-\Big(f{(x)}-g{(x)}\Big)}{h}}$

$=\,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f{(x+h)}-g{(x+h)}-f{(x)}+g{(x)}}{h}}$

$=\,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f{(x+h)}-f{(x)}-\Big(g{(x+h)}-g{(x)}\Big)}{h}}$

$=\,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \Bigg[\dfrac{f{(x+h)}-f{(x)}}{h}-\dfrac{g{(x+h)}-g{(x)}}{h}\Bigg]}$

As per difference rule of limits, the limit of difference of two functions can be written as difference of their limits.

$=\,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f{(x+h)}-f{(x)}}{h}}$ $-$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{g{(x+h)}-g{(x)}}{h}}$

According to first principle of differentiation, each term in the right right-hand side of the equation represents the derivative of the respective function.

$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{d}{dx}{\, \Big(f{(x)}-g{(x)}\Big)}$ $\,=\,$ $\dfrac{d}{dx}{\, f{(x)}}$ $-$ $\dfrac{d}{dx}{\, g{(x)}}$

In this way, the difference rule of derivatives can be derived in differential calculus mathematically from first principle.

The derivative difference rule is also written in two forms alternatively by taking $u = f{(x)}$ and $v = g{(x)}$.

$(1) \,\,\,$ $\dfrac{d}{dx}{\, (u-v)}$ $\,=\,$ $\dfrac{du}{dx}$ $-$ $\dfrac{dv}{dx}$

$(2) \,\,\,$ ${d}{\, (u-v)}$ $\,=\,$ $du-dv$

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved