Math Doubts

Proof of Equality property of Definite integrals

According to the equality property of definite integrals, the definite integrals of a function in different variables over a closed interval are equal.

$\displaystyle \int_{a}^{b}{f(x)\,}dx$ $\,=\,$ $\displaystyle \int_{a}^{b}{f(y)\,}dy$

Now, let’s learn how to prove the equality property of definite integrals mathematically in calculus.

Find the definite integral of a function

Let $f(x)$ be a function in terms of $x$ and assume that its indefinite integral is $g(x)$ plus constant of integration $c$. So, the definite integral of the function $f(x)$ with respect to $x$ over the interval $[a, b]$ is written in the following mathematical form in calculus.

$\displaystyle \int_{a}^{b}{f(x)\,}dx$ $\,=\,$ $\big[g(x)+c\big]_{a}^{b}$

Now, calculate the definite integral of the function $f(x)$ with respect to $x$ over the interval of $[a, b]$.

$=\,\,\,$ $\big[g(b)+c\big]$ $-$ $\big[g(a)+c\big]$

$=\,\,\,$ $g(b)$ $+$ $c$ $-$ $g(a)$ $-$ $c$

Perform the subtraction of the expressions to find their difference mathematically.

$=\,\,\,$ $g(b)$ $-$ $g(a)$ $+$ $c$ $-$ $c$

$=\,\,\,$ $g(b)$ $-$ $g(a)$ $+$ $\cancel{c}$ $-$ $\cancel{c}$

$=\,\,\,$ $g(b)$ $-$ $g(a)$

$\therefore\,\,\,$ $\displaystyle \int_{a}^{b}{f(x)\,}dx$ $\,=\,$ $g(b)$ $-$ $g(a)$

Evaluate the definite integral of function

Let $f(y)$ be a function in terms of $y$ and it is same as the function $f(x)$. In other words, the expressions of the function $f(x)$ and $f(y)$ are same but they are defined in two variables $x$ and $y$. Hence, the definite integral of the function will be $g(y)$ plus integral constant. Due to similar formation of both functions, the integral constant for the function $f(y)$ is also same.

Therefore, the definite integral of $f(y)$ with respect to $y$ over the interval $[a, b]$ is expressed mathematically as follows.

$\displaystyle \int_{a}^{b}{f(y)\,}dy$ $\,=\,$ $\Big[g(y)+c\Big]_{a}^{b}$

Now, find the definite integral of the function $f(y)$ with respect to $y$ over the interval of $[a, b]$.

$=\,\,\,$ $\Big[g(b)+c\Big]$ $-$ $\Big[g(a)+c\Big]$

It is time to find the subtraction of the expressions to get the difference between them in mathematical form.

$=\,\,\,$ $g(b)$ $+$ $c$ $-$ $g(a)$ $-$ $c$

$=\,\,\,$ $g(b)$ $-$ $g(a)$ $+$ $c$ $-$ $c$

$=\,\,\,$ $g(b)$ $-$ $g(a)$ $+$ $\cancel{c}$ $-$ $\cancel{c}$

$=\,\,\,$ $g(b)$ $-$ $g(a)$

$\therefore\,\,\,$ $\displaystyle \int_{a}^{b}{f(y)\,}dy$ $\,=\,$ $g(b)$ $-$ $g(a)$

Compare the definite integrals of functions

Now, compare the definite integrals of both functions to understand the relation between them.

$(1).\,\,\,$ $\displaystyle \int_{a}^{b}{f(x)\,}dx$ $\,=\,$ $g(b)$ $-$ $g(a)$

$(2).\,\,\,$ $\displaystyle \int_{a}^{b}{f(y)\,}dy$ $\,=\,$ $g(b)$ $-$ $g(a)$

It can be easily understood by comparison that the definite integrals of both functions are same.

$\therefore\,\,\,$ $\displaystyle \int_{a}^{b}{f(x)\,}dx$ $\,=\,$ $\displaystyle \int_{a}^{b}{f(y)\,}dy$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved