Cube of Sum of Two terms formula
Formula
$(1) \,\,\,$ ${(a+b)}^3$ $\,=\,$ $a^3+b^3+3ab(a+b)$
$(2) \,\,\,$ ${(x+y)}^3$ $\,=\,$ $x^3+y^3+3xy(x+y)$
${(a+b)}^3$ $\,=\,$ $a^3+b^3+3ab(a+b)$
${(x+y)}^3$ $\,=\,$ $x^3+y^3+3xy(x+y)$
$(1) \,\,\,$ ${(a+b)}^3$ $\,=\,$ $a^3+b^3+3ab(a+b)$
$(2) \,\,\,$ ${(x+y)}^3$ $\,=\,$ $x^3+y^3+3xy(x+y)$
${(a+b)}^3$ $\,=\,$ $a^3+b^3+3ab(a+b)$
${(x+y)}^3$ $\,=\,$ $x^3+y^3+3xy(x+y)$