$\dfrac{x}{b_{1}c_{2}-b_{2}c_{1}}$ $\,=\,$ $\dfrac{y}{c_{1}a_{2}-c_{2}a_{1}}$ $\,=\,$ $\dfrac{1}{a_{1}b_{2}-a_{2}b_{1}}$

$a_1{x}+b_1{y}+c_1 = 0$ and $a_2{x}+b_2{y}+c_2 = 0$ are a system of linear equations in two variables $x$ and $y$. In this case, $a_1$, $a_2$, $b_1$ and $b_2$ are coefficients of $x$ and $y$. $c_1$ and $c_2$ are constants in the pair of linear equations in two variables. The values of $x$ and $y$ can be calculated from the following formulas.

$(1) \,\,\,$ $x \,=\, \dfrac{b_{1}c_{2}-b_{2}c_{1}}{a_{1}b_{2}-a_{2}b_{1}}$

$(2) \,\,\,$ $y \,=\, \dfrac{c_{1}a_{2}-c_{2}a_{1}}{a_{1}b_{2}-a_{2}b_{1}}$

In both formulas, $a_1b_2-a_2b_1$ is a denominator. If it is equal to zero, then the values of $x$ and $y$ become infinity. So, it should not be equal to zero.

$a_1b_2-a_2b_1 \,\ne\, 0$

$\implies$ $a_1b_2 \,\ne\, a_2b_1$

$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{a_1}{a_2} \,\ne\, \dfrac{b_1}{b_2}$

Therefore, if $\dfrac{a_1}{a_2}$ is not equal to $\dfrac{b_1}{b_2}$, then the system of simultaneous linear equations has a unique solution.

In this method, the values of $x$ and $y$ can be written as the following equations by cross multiplication.

$\implies$ $\dfrac{x}{b_{1}c_{2}-b_{2}c_{1}} \,=\, \dfrac{1}{a_{1}b_{2}-a_{2}b_{1}}$

$\implies$ $\dfrac{y}{c_{1}a_{2}-c_{2}a_{1}} \,=\, \dfrac{1}{a_{1}b_{2}-a_{2}b_{1}}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{x}{b_{1}c_{2}-b_{2}c_{1}}$ $\,=\,$ $\dfrac{y}{c_{1}a_{2}-c_{2}a_{1}}$ $\,=\,$ $\dfrac{1}{a_{1}b_{2}-a_{2}b_{1}}$

This formula can be remembered easily as displaying in the diagram.

Due to the involvement of cross multiplication technique for writing this equation, the method of solving $x$ and $y$ is called the cross multiplication method.

Learn how to derive the formulas for the cross multiplication method.

Latest Math Topics

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Jul 29, 2022

Jul 17, 2022

Jun 02, 2022

Apr 06, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved