$\cot{3\theta} \,=\, \dfrac{3\cot{\theta}-\cot^3{\theta}}{1-3\cot^2{\theta}}$

$\dfrac{3\cot{\theta}-\cot^3{\theta}}{1-3\cot^2{\theta}} \,=\, \cot{3\theta}$

It is called cot triple angle identity and used in two different cases as a formula.

- Cot of triple angle is expanded as the quotient of subtraction of cot cubed of angle from three times cot of angle by subtraction of three times cot squared of angle from one.
- The quotient of subtraction of cot cubed of angle from three times cot of angle by subtraction of three times cot squared of angle from one is simplified as cot of triple angle.

The co-tangent of triple angle identity is used to either expand or simplify the triple angle cot functions like $\cot{3A}$, $\cot{3x}$, $\cot{3\alpha}$ and etc. For example,

$(1) \,\,\,\,\,\,$ $\cot{3x} \,=\, \dfrac{3\cot{x}-\cot^3{x}}{1-3\cot^2{x}}$

$(2) \,\,\,\,\,\,$ $\cot{3A} \,=\, \dfrac{3\cot{A}-\cot^3{A}}{1-3\cot^2{A}}$

$(3) \,\,\,\,\,\,$ $\cot{3\alpha} \,=\, \dfrac{3\cot{\alpha}-\cot^3{\alpha}}{1-3\cot^2{\alpha}}$

Learn how to derive the rule of cot triple angle identity in trigonometry by geometry.

Latest Math Topics

Jun 05, 2023

May 21, 2023

May 16, 2023

May 10, 2023

May 03, 2023

Latest Math Problems

May 09, 2023

A best free mathematics education website that helps students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved