$\cot{3\theta} \,=\, \dfrac{3\cot{\theta}-\cot^3{\theta}}{1-3\cot^2{\theta}}$

$\dfrac{3\cot{\theta}-\cot^3{\theta}}{1-3\cot^2{\theta}} \,=\, \cot{3\theta}$

It is called cot triple angle identity and used in two different cases as a formula.

- Cot of triple angle is expanded as the quotient of subtraction of cot cubed of angle from three times cot of angle by subtraction of three times cot squared of angle from one.
- The quotient of subtraction of cot cubed of angle from three times cot of angle by subtraction of three times cot squared of angle from one is simplified as cot of triple angle.

The co-tangent of triple angle identity is used to either expand or simplify the triple angle cot functions like $\cot{3A}$, $\cot{3x}$, $\cot{3\alpha}$ and etc. For example,

$(1) \,\,\,\,\,\,$ $\cot{3x} \,=\, \dfrac{3\cot{x}-\cot^3{x}}{1-3\cot^2{x}}$

$(2) \,\,\,\,\,\,$ $\cot{3A} \,=\, \dfrac{3\cot{A}-\cot^3{A}}{1-3\cot^2{A}}$

$(3) \,\,\,\,\,\,$ $\cot{3\alpha} \,=\, \dfrac{3\cot{\alpha}-\cot^3{\alpha}}{1-3\cot^2{\alpha}}$

Learn how to derive the rule of cot triple angle identity in trigonometry by geometry.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.