Math Doubts

Cot triple angle formula

Expansion form

$\cot{3\theta} \,=\, \dfrac{3\cot{\theta}-\cot^3{\theta}}{1-3\cot^2{\theta}}$

Simplified form

$\dfrac{3\cot{\theta}-\cot^3{\theta}}{1-3\cot^2{\theta}} \,=\, \cot{3\theta}$

Introduction

It is called cot triple angle identity and used in two different cases as a formula.

  1. Cot of triple angle is expanded as the quotient of subtraction of cot cubed of angle from three times cot of angle by subtraction of three times cot squared of angle from one.
  2. The quotient of subtraction of cot cubed of angle from three times cot of angle by subtraction of three times cot squared of angle from one is simplified as cot of triple angle.

How to use

The co-tangent of triple angle identity is used to either expand or simplify the triple angle cot functions like $\cot{3A}$, $\cot{3x}$, $\cot{3\alpha}$ and etc. For example,

$(1) \,\,\,\,\,\,$ $\cot{3x} \,=\, \dfrac{3\cot{x}-\cot^3{x}}{1-3\cot^2{x}}$

$(2) \,\,\,\,\,\,$ $\cot{3A} \,=\, \dfrac{3\cot{A}-\cot^3{A}}{1-3\cot^2{A}}$

$(3) \,\,\,\,\,\,$ $\cot{3\alpha} \,=\, \dfrac{3\cot{\alpha}-\cot^3{\alpha}}{1-3\cot^2{\alpha}}$

Proof

Learn how to derive the rule of cot triple angle identity in trigonometry by geometry.



Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more