Math Doubts

Proof of Constant multiple rule of Derivatives

Let $f(x)$ be a function in a variable $x$. In differential calculus, the differentiation of the function $f(x)$ with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, f(x)}$

For deriving the derivative of a constant multiple function with respect to a variable, we must know the fundamental definition of the differentiation of a function in limit form.

Definition of the derivative in Limit form

According to the definition of the derivative, the derivative of a function $f(x)$ with respect to $x$ can be written in limit form.

$\dfrac{d}{dx}{\, f(x)}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f(x+\Delta x)-f(x)}{\Delta x}}$

If we take the change in variable $x$ is equal to $h$, which means $\Delta x = h$, then the equation can be expressed in terms of $h$ as follows.

$\implies$ $\dfrac{d}{dx}{\, f(x)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f(x+h)-f(x)}{h}}$

Define a Constant multiple function

Let $k$ be a constant, then the product of constant $k$ and the function $f(x)$ is called the constant multiple function, which is written in product form as $k.f(x)$ mathematically.

Find the Derivative of constant multiple function

Take, the constant multiple function is denoted by $g(x)$. Therefore, $g(x) = k.f(x)$. Now, write the differentiation of $g(x)$ with respect to $x$ in limit form as per the definition of the derivative.

$\dfrac{d}{dx}{\, g(x)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{g(x+h)-g(x)}{h}}$

In this case, $g(x) = k.f(x)$ then $g(x+h) = k.f(x+h)$. Now, substitute them in the above equation.

$\implies$ $\dfrac{d}{dx}{\, g(x)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{k.f(x+h)-k.f(x)}{h}}$

$\implies$ $\dfrac{d}{dx}{\, \Big(k.f(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{k.f(x+h)-k.f(x)}{h}}$

$k$ is a common factor in the expression of the numerator of the function and it can be taken out as a common factor from the terms as per the factorization by taking out the common factors.

$\implies$ $\dfrac{d}{dx}{\, \Big(k.f(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{k\Big(f(x+h)-f(x)\Big)}{h}}$

Now, factorize the function for separating the constant.

$=\,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \Bigg[k \times \Bigg(\dfrac{f(x+h)-f(x)}{h}\Bigg) \Bigg]}$

It can be further simplified by the product rule of limits.

$=\,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize (k)}$ $\times$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f(x+h)-f(x)}{h}}$

Now, evaluate the limit of the constant by the direct substitution method.

$=\,\,\,$ $k \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f(x+h)-f(x)}{h}}$

According to the fundamental definition of the derivative, the limit of the second function is the differentiation of the function $f(x)$.

$=\,\,\,$ $k \times \dfrac{d}{dx}{\, f(x)}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{d}{dx}{\, \Big(k.f(x)\Big)}$ $\,=\,$ $k.\dfrac{d}{dx}{\, f(x)}$

Therefore, it is proved that the derivative of a constant multiple function with respect to a variable is equal to the product of the constant and the derivative of the function.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved