$\dfrac{d}{dx}{\, \Big(k.f(x)\Big)} \,=\, k \times \dfrac{d}{dx}{\, f(x)}$

The derivative of product of a constant and a function is equal to the product of constant and the derivative of the function. This property of differentiation is called the constant multiple rule of derivatives.

Let’s take $x$ is a variable, $k$ is a constant and $f(x)$ is a function in terms of $x$. If the constant $k$ is multiplied by the function $f(x)$, then the product of them is $k.f(x)$, which is called as the constant multiple function.

The derivative of the constant multiple function with respect to $x$ is written in mathematical form as follows.

$\dfrac{d}{dx}{\, \Big(k.f(x)\Big)}$

The differentiation of the constant multiple function with respect to $x$ is equal to the product of the constant $k$ and the derivative of the function $f(x)$.

$\implies$ $\dfrac{d}{dx}{\, \Big(k.f(x)\Big)} \,=\, k \times \dfrac{d}{dx}{\, f(x)}$

This property is called the constant multiple rule of differentiation and it is used as a formula in differential calculus.

Look at the following examples to understand the use of the constant multiple rule in differential calculus.

$(1) \,\,\,$ $\dfrac{d}{dx}{\, \Big(6x^2\Big)} \,=\, 6 \times \dfrac{d}{dx}{\, x^2}$

$(2) \,\,\,$ $\dfrac{d}{dy}{\, \Bigg(\dfrac{\log_{e}{y}}{4}\Bigg)} \,=\, \dfrac{1}{4} \times \dfrac{d}{dy}{\, \log_{e}{y}}$

$(3) \,\,\,$ $\dfrac{d}{dz}{\, \Big(-0.7\sin{3z}\Big)} \,=\, -0.7 \times \dfrac{d}{dx}{\, \sin{3z}}$

Learn how to derive the constant multiple rule in differential calculus.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.