Math Doubts

Angle difference formulas

A trigonometric identity to expand a trigonometric function having difference of two angles is called the angle difference identity. In trigonometry, there are four angle difference trigonometric identities and they’re used as formulas in mathematics. Let’s start to study all the angle difference identities with proofs.

Sine angle difference formula

$(1) \,\,\,\,$ $\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $-$ $\cos{A}\sin{B}$

$(2) \,\,\,\,$ $\sin{(x-y)}$ $\,=\,$ $\sin{x}\cos{y}$ $-$ $\cos{x}\sin{y}$

$(3) \,\,\,\,$ $\sin{(\alpha-\beta)}$ $\,=\,$ $\sin{\alpha}\cos{\beta}$ $-$ $\cos{\alpha}\sin{\beta}$

Cosine angle difference formula

$(1) \,\,\,\,$ $\cos{(A-B)}$ $\,=\,$ $\cos{A}\cos{B}$ $+$ $\sin{A}\sin{B}$

$(2) \,\,\,\,$ $\cos{(x-y)}$ $\,=\,$ $\cos{x}\cos{y}$ $+$ $\sin{x}\sin{y}$

$(3) \,\,\,\,$ $\cos{(\alpha-\beta)}$ $\,=\,$ $\cos{\alpha}\cos{\beta}$ $+$ $\sin{\alpha}\sin{\beta}$

Tangent angle difference formula

$(1) \,\,\,\,$ $\tan{(A-B)}$ $\,=\,$ $\dfrac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}$

$(2) \,\,\,\,$ $\tan{(x-y)}$ $\,=\,$ $\dfrac{\tan{x}-\tan{y}}{1+\tan{x}\tan{y}}$

$(3) \,\,\,\,$ $\tan{(\alpha-\beta)}$ $\,=\,$ $\dfrac{\tan{\alpha}-\tan{\beta}}{1+\tan{\alpha}\tan{\beta}}$

Cotangent angle difference formula

$(1) \,\,\,\,$ $\cot{(A-B)}$ $\,=\,$ $\dfrac{\cot{B}\cot{A}+1}{\cot{B}-\cot{A}}$

$(2) \,\,\,\,$ $\cot{(x-y)}$ $\,=\,$ $\dfrac{\cot{y}\cot{x}+1}{\cot{y}-\cot{x}}$

$(3) \,\,\,\,$ $\cot{(\alpha-\beta)}$ $\,=\,$ $\dfrac{\cot{\beta}\cot{\alpha}+1}{\cot{\beta}-\cot{\alpha}}$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved