Math Doubts

Angle difference formulas

A trigonometric identity to expand a trigonometric function having difference of two angles is called the angle difference identity. In trigonometry, there are four angle difference trigonometric identities and they’re used as formulas in mathematics. Let’s start to study all the angle difference identities with proofs.

Sine angle difference formula

$(1) \,\,\,\,$ $\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $-$ $\cos{A}\sin{B}$

$(2) \,\,\,\,$ $\sin{(x-y)}$ $\,=\,$ $\sin{x}\cos{y}$ $-$ $\cos{x}\sin{y}$

$(3) \,\,\,\,$ $\sin{(\alpha-\beta)}$ $\,=\,$ $\sin{\alpha}\cos{\beta}$ $-$ $\cos{\alpha}\sin{\beta}$

Cosine angle difference formula

$(1) \,\,\,\,$ $\cos{(A-B)}$ $\,=\,$ $\cos{A}\cos{B}$ $+$ $\sin{A}\sin{B}$

$(2) \,\,\,\,$ $\cos{(x-y)}$ $\,=\,$ $\cos{x}\cos{y}$ $+$ $\sin{x}\sin{y}$

$(3) \,\,\,\,$ $\cos{(\alpha-\beta)}$ $\,=\,$ $\cos{\alpha}\cos{\beta}$ $+$ $\sin{\alpha}\sin{\beta}$

Tangent angle difference formula

$(1) \,\,\,\,$ $\tan{(A-B)}$ $\,=\,$ $\dfrac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}$

$(2) \,\,\,\,$ $\tan{(x-y)}$ $\,=\,$ $\dfrac{\tan{x}-\tan{y}}{1+\tan{x}\tan{y}}$

$(3) \,\,\,\,$ $\tan{(\alpha-\beta)}$ $\,=\,$ $\dfrac{\tan{\alpha}-\tan{\beta}}{1+\tan{\alpha}\tan{\beta}}$

Cotangent angle difference formula

$(1) \,\,\,\,$ $\cot{(A-B)}$ $\,=\,$ $\dfrac{\cot{B}\cot{A}+1}{\cot{B}-\cot{A}}$

$(2) \,\,\,\,$ $\cot{(x-y)}$ $\,=\,$ $\dfrac{\cot{y}\cot{x}+1}{\cot{y}-\cot{x}}$

$(3) \,\,\,\,$ $\cot{(\alpha-\beta)}$ $\,=\,$ $\dfrac{\cot{\beta}\cot{\alpha}+1}{\cot{\beta}-\cot{\alpha}}$

Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more