# Angle difference formulas

A trigonometric identity to expand a trigonometric function having difference of two angles is called the angle difference identity. In trigonometry, there are four angle difference trigonometric identities and they’re used as formulas in mathematics. Let’s start to study all the angle difference identities with proofs.

### Sine angle difference formula

$(1) \,\,\,\,$ $\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $-$ $\cos{A}\sin{B}$

$(2) \,\,\,\,$ $\sin{(x-y)}$ $\,=\,$ $\sin{x}\cos{y}$ $-$ $\cos{x}\sin{y}$

$(3) \,\,\,\,$ $\sin{(\alpha-\beta)}$ $\,=\,$ $\sin{\alpha}\cos{\beta}$ $-$ $\cos{\alpha}\sin{\beta}$

### Cosine angle difference formula

$(1) \,\,\,\,$ $\cos{(A-B)}$ $\,=\,$ $\cos{A}\cos{B}$ $+$ $\sin{A}\sin{B}$

$(2) \,\,\,\,$ $\cos{(x-y)}$ $\,=\,$ $\cos{x}\cos{y}$ $+$ $\sin{x}\sin{y}$

$(3) \,\,\,\,$ $\cos{(\alpha-\beta)}$ $\,=\,$ $\cos{\alpha}\cos{\beta}$ $+$ $\sin{\alpha}\sin{\beta}$

### Tangent angle difference formula

$(1) \,\,\,\,$ $\tan{(A-B)}$ $\,=\,$ $\dfrac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}$

$(2) \,\,\,\,$ $\tan{(x-y)}$ $\,=\,$ $\dfrac{\tan{x}-\tan{y}}{1+\tan{x}\tan{y}}$

$(3) \,\,\,\,$ $\tan{(\alpha-\beta)}$ $\,=\,$ $\dfrac{\tan{\alpha}-\tan{\beta}}{1+\tan{\alpha}\tan{\beta}}$

### Cotangent angle difference formula

$(1) \,\,\,\,$ $\cot{(A-B)}$ $\,=\,$ $\dfrac{\cot{B}\cot{A}+1}{\cot{B}-\cot{A}}$

$(2) \,\,\,\,$ $\cot{(x-y)}$ $\,=\,$ $\dfrac{\cot{y}\cot{x}+1}{\cot{y}-\cot{x}}$

$(3) \,\,\,\,$ $\cot{(\alpha-\beta)}$ $\,=\,$ $\dfrac{\cot{\beta}\cot{\alpha}+1}{\cot{\beta}-\cot{\alpha}}$

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.