A trigonometric identity to expand a trigonometric function having difference of two angles is called the angle difference identity. In trigonometry, there are four angle difference trigonometric identities and they’re used as formulas in mathematics. Let’s start to study all the angle difference identities with proofs.
$(1) \,\,\,\,$ $\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $-$ $\cos{A}\sin{B}$
$(2) \,\,\,\,$ $\sin{(x-y)}$ $\,=\,$ $\sin{x}\cos{y}$ $-$ $\cos{x}\sin{y}$
$(3) \,\,\,\,$ $\sin{(\alpha-\beta)}$ $\,=\,$ $\sin{\alpha}\cos{\beta}$ $-$ $\cos{\alpha}\sin{\beta}$
$(1) \,\,\,\,$ $\cos{(A-B)}$ $\,=\,$ $\cos{A}\cos{B}$ $+$ $\sin{A}\sin{B}$
$(2) \,\,\,\,$ $\cos{(x-y)}$ $\,=\,$ $\cos{x}\cos{y}$ $+$ $\sin{x}\sin{y}$
$(3) \,\,\,\,$ $\cos{(\alpha-\beta)}$ $\,=\,$ $\cos{\alpha}\cos{\beta}$ $+$ $\sin{\alpha}\sin{\beta}$
$(1) \,\,\,\,$ $\tan{(A-B)}$ $\,=\,$ $\dfrac{\tan{A}-\tan{B}}{1+\tan{A}\tan{B}}$
$(2) \,\,\,\,$ $\tan{(x-y)}$ $\,=\,$ $\dfrac{\tan{x}-\tan{y}}{1+\tan{x}\tan{y}}$
$(3) \,\,\,\,$ $\tan{(\alpha-\beta)}$ $\,=\,$ $\dfrac{\tan{\alpha}-\tan{\beta}}{1+\tan{\alpha}\tan{\beta}}$
$(1) \,\,\,\,$ $\cot{(A-B)}$ $\,=\,$ $\dfrac{\cot{B}\cot{A}+1}{\cot{B}-\cot{A}}$
$(2) \,\,\,\,$ $\cot{(x-y)}$ $\,=\,$ $\dfrac{\cot{y}\cot{x}+1}{\cot{y}-\cot{x}}$
$(3) \,\,\,\,$ $\cot{(\alpha-\beta)}$ $\,=\,$ $\dfrac{\cot{\beta}\cot{\alpha}+1}{\cot{\beta}-\cot{\alpha}}$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2021 Math Doubts, All Rights Reserved