$\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $-$ $\cos{A}\sin{B}$

It is called sine of angle difference identity. It states that the sin of subtraction of two angles is equal to the subtraction of products of sine and cosine of both angles.

Sine functions are often appeared with subtraction of two angles. In order to deal them, sine of difference of two angles identity is derived in trigonometry.

The sine of difference of two angles formula can be written in several ways, for example $\sin{(A-B)}$, $\sin{(x-y)}$, $\sin{(\alpha-\beta)}$, and so on but it is popularly written in the following three mathematical forms.

$(1) \,\,\,\,\,\,$ $\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $-$ $\cos{A}\sin{B}$

$(2) \,\,\,\,\,\,$ $\sin{(x-y)}$ $\,=\,$ $\sin{x}\cos{y}$ $-$ $\cos{x}\sin{y}$

$(3) \,\,\,\,\,\,$ $\sin{(\alpha-\beta)}$ $\,=\,$ $\sin{\alpha}\cos{\beta}$ $-$ $\cos{\alpha}\sin{\beta}$

The sine of angle difference property is mainly used in two cases.

- To expand sin of difference of two angles as the subtraction of products of sine and cosine functions.
- To simplify the subtraction of products of sine and cosine functions as the sine of subtraction of two angles.

Learn how to derive the angle difference sin identity in mathematical form by geometrical approach in trigonometry.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.