Math Doubts

Alternate Interior Angles formed by Parallel Lines and their transversal

alternate interior angles of parallel lines transversal

The interior angles which appear opposite sides of transversal of parallel lines are called alternate interior angles formed by parallel lines and their transversal.

When two parallel lines are cut by a transversal, four interior angles are formed geometrically and every two interior angles are appeared oppositely at the intersection of the parallel lines by their transversal.

Thus, two pairs of alternate interior angles are formed when two parallel lines are intersected by their transversal.

Alternate Interior Angles

alternate interior angles formation parallel lines transversal

$\angle APY$, $\angle BPY$, $\angle CQX$ and $\angle DQX$ are four interior angles, which are actually formed by the intersection of two parallel lines ($\overleftrightarrow{AB}$ and $\overleftrightarrow{CD}$) by their transversal line $\overleftrightarrow{XY}$.

$1. \,\,\,\,\,\,$ $\angle APY$ and $\angle DQX$

$2. \,\,\,\,\,\,$ $\angle BPY$ and $\angle CQX$

The above two pairs of angles are interior angles and also appear opposite sides of the transversal. Therefore, they are called alternate interior angles.


equal alternate interior angles theorem parallel lines transversal

The every pair of alternate interior angles are equal geometrically when two parallel lines are intersected by their transversal line. It is possible because of the parallelism of the parallel lines.

$1. \,\,\,\,\,\,$ $\angle APY \,=\, \angle DQX$

$2. \,\,\,\,\,\,$ $\angle BPY \,=\, \angle CQX$

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved