Math Doubts

Addition of Literals

A method of adding two or more literal numbers for calculating their sum is called the addition of literals. It is called as the summation of the literals.

Introduction

You have studied earlier how to calculate addition of the numbers in arithmetic and now, you are about to learn how to add two or more literals. There are two cases involved in adding the two or more literals. So, let’s discuss both cases to understand the procedure for the addition of the literals.

Adding same literals

Let’s learn how to add two or more same literal numbers.

$a+a$

$a$ is a literal and add it to same literal number once. There are two $a$ symbols in this case. Hence, the sum of two $a$ symbols can be written as $2a$ mathematically.

$\implies a+a = 2a$

It can also be proved from arithmetic.

$a+a$ $\,=\,$ $1 \times a + 1 \times a$

$\implies$ $a+a$ $\,=\,$ $a \times (1+1)$

$\implies$ $a+a$ $\,=\,$ $a \times 2$

$\,\,\, \therefore \,\,\,\,\,\,$ $a+a$ $\,=\,$ $2a$

Examples

$(1) \,\,\,\,\,$ $b+b+b$ $\,=\,$ $3b$

$(2) \,\,\,\,\,$ $g+g+g+g$ $\,=\,$ $4g$

$(3) \,\,\,\,\,$ $x+x+x+x+x$ $\,=\,$ $5x$

Adding different literals

Let’s learn how to add two or more different literal numbers.

$a+b$

$a$ and $b$ are two different literals, and their values are unknown. So, it is not possible to get their sum. Hence, the summation of them is simply expressed as an expression in algebra.

Examples

$(1) \,\,\,\,\,$ $x+y+z$

$(2) \,\,\,\,\,$ $p+q+r+s$

$(3) \,\,\,\,\,$ $d+e+f+g+h$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved