# $a^2-b^2$ identity

## Formula

$a^2-b^2$ $\,=\,$ $(a+b)(a-b)$

### Introduction

$(a+b)(a-b)$ is an algebraic identity and represents the product of two binomials, formed by the summation and subtraction of the literals $a$ and $b$. In mathematics, it is used to write the product of the binomial factors as subtraction of the squares of the literals and vice-versa.

#### Proofs

The $a$ squared minus $b$ squared algebraic identity can be derived in two distinct methods.

##### Algebraic Method

Learn how to prove the $a$ square minus $b$ square rule mathematically in algebraic approach.

##### Geometric Method

Learn how to derive the $a$ squared minus $b$ squared law mathematically in geometric method.

##### Verification

Take $a \,=\, 6$ and $b \,=\, 4$. Now, let’s verify the $a$ square minus $b$ square algebraic identity by substituting the values in both side expressions.

$(1).\,\,$ $a^2-b^2$ $\,=\,$ $6^2-4^2$ $\,=\,$ $36-16$ $\,=\,$ $20$

$(2).\,\,$ $(a+b)(a-b)$ $\,=\,$ $(6+4)(6-4)$ $\,=\,$ $10 \times 2$ $\,=\,$ $20$

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.