Math Doubts

Proof of a2 – b2 formula in Algebraic Method


$a^2-b^2 \,=\, (a+b)(a-b)$

The algebraic expression $a^2-b^2$ represents the difference of the two square quantities. It can be expressed in factoring form as the product of two special binomials $a+b$ and $a-b$. The factoring form of the difference of squares can be derived in mathematics algebraically according to factorization.

Difference of squares in Algebraic form

$a$ and $b$ represent two terms and the difference of squares of them is written as $a^2-b^2$ in mathematics.

A small Adjustment for factoring

A small adjustment is required to factor the difference of the two squares. It can be achieved by adding and subtracting a term $ab$ in the right-hand side of the algebraic equation.

$\implies$ $a^2-b^2$ $\,=\,$ $a^2-b^2-ab+ab$

$\implies$ $a^2-b^2$ $\,=\,$ $a^2-ab+ab-b^2$

Factorize the algebraic expression

$\implies$ $a^2-b^2$ $\,=\,$ $a^2-ab+ab-b^2$

The right-hand side of the equation can be factored by the factorisation method. $a$ is a common factor in the first two terms and $b$ is a common factor in the last two terms. So, they can be factored.

$\implies$ $a^2-b^2$ $\,=\,$ $a(a-b)+b(a-b)$

Now, $a-b$ is a common factor in the both terms of the right-hand side of the equation.

$\implies$ $a^2-b^2$ $\,=\,$ $(a-b)(a+b)$

$\,\,\, \therefore \,\,\,\,\,\,$ $a^2-b^2$ $\,=\,$ $(a+b)(a-b)$

Math Doubts
Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more