A positive integer root of a rational number is called a surd or a radical.

The irrational numbers are very special real numbers and no finite number of digits can represent them. However, some types of irrational numbers can be expressed in various roots of rational numbers and this type of representing an irrational number as a root of a rational number is called a surd.

$(1) \,\,\,\,\,$ $1.41421356237309504 \cdots$

$1.41421356237309504 \cdots$ is an irrational number. It is not possible to write it as a rational number and the value of this number cannot be written in number system completely. However, it can be written as a square root of the number $2$.

$\sqrt{2} = 1.41421356237309504 \cdots$

Observe the following few more examples for your better understanding.

$(2) \,\,\,\,\,$ $\sqrt[\displaystyle 3]{5} = 1.70997594667669 \cdots$

$(3) \,\,\,\,\,$ $\sqrt[\displaystyle 4]{2} = 1.18920711500272 \cdots$

$(4) \,\,\,\,\,$ $\sqrt[\displaystyle 5]{121} = 2.60949863527887 \cdots$

$(5) \,\,\,\,\,$ $\sqrt[\displaystyle 6]{7} = 1.38308755426848 \cdots$

In this way, some irrational numbers are written in simple form.

If $n$ is a positive integer and $a$ is a rational number then a surd is written in algebraic form.

$\sqrt[\displaystyle n]{\displaystyle a}$

The value of $n$ is a positive integer and the value of $a$ is a position rational number. Therefore, the value of the surd is always positive.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved