Sum of Two squares formula

Formula

$(1). \,\,\,$ $a^2+b^2$ $\,=\,$ ${(a+b)}^2-2ab$

$(2). \,\,\,$ $x^2+y^2$ $\,=\,$ ${(x+y)}^2-2xy$

The sum of two square terms is equal to twice their product subtracted from square of sum of them, is called the sum of two squares formula. It is also called as the sum of two square terms formula.

Introduction

In mathematics, the sum of two square terms are appeared and It is essential to express it into equivalent form in some special cases. Hence, the sum of two squares is written as two times their product less than the square of their sum, according to square of sum of two terms formula.

The sum of two squares formula is written generally in two ways and they are $a^2+b^2$ or $x^2+y^2$.

Other forms

The sum of two square terms formula can be written in terms any two terms.

$(1). \,\,\,$ $p^2+q^2$ $\,=\,$ ${(p+q)}^2-2pq$

$(2). \,\,\,$ $\alpha^2+\beta^2$ $\,=\,$ ${(\alpha+\beta)}^2-2\alpha\beta$

$(3). \,\,\,$ $\sin^2{\theta}+\cos^2{\theta}$ $\,=\,$ ${(\sin{\theta}+\cos{\theta})}^2-2\sin{\theta}\cos{\theta}$

Email subscription
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.