Math Doubts

Solve $\dfrac{2x-3}{4x+5}$ $\,=\,$ $\dfrac{1}{3}$

$2$ times $x$ minus $3$ divided by $4$ times $x$ plus $5$ equals to $1$ by $3$ is a given equation in algebraic form. The value of $x$ is unknown and it should be evaluated by solving this equation in this problem.

$\dfrac{2x-3}{4x+5}$ $\,=\,$ $\dfrac{1}{3}$

Use the cross multiplying method

solve linear equation in one variable

The given equation in rational form is already in simplified form. $2x-3$ divided by $4x+5$ is a rational expression on one side and $1$ divided by $3$ is a fraction on other side of the given equation. It can be simplified by using the cross multiply method.

$\implies$ $3 \times (2x-3)$ $\,=\,$ $1 \times (4x+5)$

Multiply the terms by coefficients

On the left-hand side of the equation, the coefficient $3$ can be distributed over the difference of the terms $2x$ and $3$ as per the distributive property of multiplication over the subtraction. On the right-hand side of the equation, the coefficient $1$ can be distributed across the addition of the terms $4x$ and $5$ as per the distributive property of multiplication over the addition.

$\implies$ $3 \times 2x$ $-$ $3 \times 3$ $\,=\,$ $1 \times 4x$ $+$ $1 \times 5$

$\implies$ $6x-9$ $\,=\,$ $4x+5$

Simplify the Linear equation

The equation $6$ times $x$ minus $9$ equals to $4$ times $x$ plus $5$ is a linear equation in one variable. It can be solved by using the transposition method.

$\implies$ $6x-4x$ $\,=\,$ $5+9$

$\implies$ $2x$ $\,=\,$ $14$

$\implies$ $2 \times x$ $\,=\,$ $14$

$\implies$ $x$ $\,=\,$ $\dfrac{14}{2}$

$\implies$ $x$ $\,=\,$ $\dfrac{\cancel{14}}{\cancel{2}}$

$\,\,\,\therefore\,\,\,\,\,\,$ $x\,=\,7$

Therefore, the solution set for the variable $x\,=\,\{\,7\,\}$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved