Math Doubts

Distributive property of Multiplication over Addition


$a \times (b+c)$ $\,=\,$ $a \times b + a \times c$

An arithmetic property that distributes the multiplication across the addition is called the distributive property of multiplication over addition.


$a$, $b$ and $c$ are three literals and represent three terms.

The product of the term $a$ and the sum of the terms $b$ and $c$ is written in mathematical form as follows.

$a \times (b+c)$

The product of them can be evaluated by distributing the multiplication over the addition.

$\implies$ $a \times (b+c)$ $\,=\,$ $a \times b + a \times c$

This distributive property can also be used to distribute the multiplication of a term over the sum of two or more terms.

$\implies$ $a \times (b+c+d+\ldots)$ $\,=\,$ $a \times b + a \times c + a \times d + \ldots$


Learn how to prove the distributive property of multiplication across addition in algebraic form by geometric method.


$2$, $3$ and $4$ are three numbers. Find the product of number $2$ and sum of the numbers of $3$ and $4$.

$2 \times (3+4)$

Find the value of this arithmetic expression.

$\implies$ $2 \times (3+4)$ $\,=\,$ $2 \times 7$

$\implies$ $2 \times (3+4) \,=\, 14$

Now, find the sum of the products of $2$ and $3$, and $2$ and $4$.

$2 \times 3 + 2 \times 4$ $\,=\,$ $6+8$

$\implies$ $2 \times 3 + 2 \times 4$ $\,=\,$ $14$

Now, compare the results of both expressions. They are equal.

$\,\,\, \therefore \,\,\,\,\,\,$ $2 \times (3+4)$ $\,=\,$ $2 \times 3 + 2 \times 4$ $\,=\,$ $14$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved