# Trigonometric Proof of $\sin{(90^\circ+\theta)}$ identity The sine of sum of the angles ninety degrees and theta is equal to cosine of angle theta.

$\sin{(90^\circ+\theta)}$ $\,=\,$ $\cos{\theta}$

The sine of ninety degrees plus theta formula can be derived mathematically by a trigonometric identity and the values of sine and cosine functions.

Now, let’s learn how to prove the sine of the sum of angles ninety degrees plus theta identity in mathematical form by trigonometry.

### Expand the sine of sum of two angles

The trigonometric expression $\sin{(90^\circ+\theta)}$ expresses the sine of sum of two angles. So, it can be expanded by the angle sum identity of sine function.

$\sin{(A+B)}$ $\,=\,$ $\sin{A}\cos{B}$ $+$ $\cos{A}\sin{B}$

Assume $A \,=\, 90^\circ$ and $B \,=\, \theta$. Now, substitute them in the expansion of the angle sum identity of sine function.

$=\,\,\,$ $\sin{90^\circ}\cos{\theta}$ $+$ $\cos{90^\circ}\sin{\theta}$

$=\,\,\,$ $\sin{90^\circ} \times \cos{\theta}$ $+$ $\cos{90^\circ} \times \sin{\theta}$

### Substitute the values of functions

According to the trigonometry, the sin of 90 degrees is one and cos of 90 degrees is zero. So, substitute them in the trigonometric expression to find its value.

$=\,\,\,$ $1 \times \cos{\theta}$ $+$ $0 \times \sin{\theta}$

### Simplify the Trigonometric expression

It is time to evaluate the trigonometric expression and it can be calculated by simplification.

$=\,\,\,$ $\cos{\theta}$ $+$ $0$

$=\,\,\,$ $\cos{\theta}$

Therefore, it is proved that the sine of angle ninety degrees plus theta is equal to cosine of angle theta.

$\therefore\,\,\,$ $\sin{(90^\circ+\theta)}$ $\,=\,$ $\cos{\theta}$

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.