Math Doubts

Solve $\displaystyle \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{4}{x}\Bigg)}^{\displaystyle 3x}$

$x$ is a literal and the sum of the one and quotient of $4$ by $x$ is denoted as $1 + \dfrac{4}{x}$. It is raised to the power of $3x$.

${\Bigg(1+\dfrac{4}{x}\Bigg)}^{\displaystyle 3x}$

If $x$ tends to infinity, the value of the limit of the function is written as follows to express it in mathematical form.

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{4}{x}\Bigg)}^{\displaystyle 3x}$


Adjusting the function

The limit of the function is same the limit of the following binomial function.

$\displaystyle \Large \lim_{x \,\to\, \infty} \, \normalsize {\Bigg(1+\dfrac{1}{x}\Bigg)}^{\displaystyle x} \,=\, e$

So, try to change the limit of the function in the above form.

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{1}{\dfrac{x}{4}}\Bigg)}^{\displaystyle 3x}$


Adjusting the exponent of the function

Now, try to adjust the power of the function same as our formula.

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)}^{\displaystyle 3x \times 1}$

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)}^{\displaystyle 3x \times \normalsize \frac{4}{4}}$

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)}^{\displaystyle 3 \times 4 \times \frac{x}{4}}$

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)}^{\displaystyle 12 \times \frac{x}{4}}$

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)}^{\displaystyle 12 \times \frac{x}{4}}$

Apply, power rule of exponents to transform the function as the power of an exponential term.

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg[{\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)}^{\displaystyle \frac{x}{4}}\Bigg]}^{12}$

$= \,\,\, {\Bigg[ \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)}^{\displaystyle \frac{x}{4}}\Bigg]}^{12}$


Adjusting the limit of the function

If $x \,\to\, \infty$ then $\dfrac{x}{4} \,\to\, \dfrac{\infty}{4}$. Therefore, $\dfrac{x}{4} \,\to\, \infty$. It is derived that the value of $\dfrac{x}{4}$ tends to infinity as $x$ approaches infinity. Change the limit of $x$ value to obtain the limit of the function in required form.

$= \,\,\, {\Bigg[ \displaystyle \Large \lim_{\normalsize \dfrac{x}{4} \Large \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)}^{\displaystyle \frac{x}{4}}\Bigg]}^{12}$


Obtaining Result

Finally, apply the limit formula and obtain the required result mathematically.

$= \,\,\, {[\,e\,]}^{12}$

$= \,\,\, e^{12}$

Therefore, it is the required solution for this limit problem in calculus mathematics.

Latest Math Topics
Latest Math Problems
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more