# Evaluate $\displaystyle \large \lim_{x\,\to\,\infty}{\normalsize \bigg(1+\dfrac{4}{x}\bigg)^3x}$ by Rules

$x$ is a literal and the sum of the one and quotient of $4$ by $x$ is denoted as $1 + \dfrac{4}{x}$. It is raised to the power of $3x$.

${\Bigg(1+\dfrac{4}{x}\Bigg)}^3x$

If $x$ tends to infinity, the value of the limit of the function is written as follows to express it in mathematical form.

$= \,\,\, \displaystyle \Large \lim_{x \,\to\, \infty} \normalsize {\Bigg(1+\dfrac{4}{x}\Bigg)}^3x$

### Compare the function with Limit rule

The limit of the $1$ plus $4$ by $x$ whole power of $3x$ as $x$ approaches infinity is closely matches with the following exponential limit rule.

$\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \bigg(1+\dfrac{1}{x}\bigg)^x}$ $\,=\,$ $e$

### Adjust the function into required form

Let us try to adjust the function in the exponential notation into the above required form. In order to start the process, express the quotient of $4$ by $x$ in its reciprocal form.

$\implies$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \bigg(1+\dfrac{4}{x}\bigg)^3x}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^3x}$

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^3x}$

The quantity in the denominator of the second term of binomial in the function should be the exponent for using this exponential limit rule. So, let’s make some adjustments at exponent position for obtaining it.

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^3x \times 1}$

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^3x \times \dfrac{4}{4}}$

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^3 \times x \times \dfrac{4}{4}}$

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^3 \times x \times \dfrac{4 \times 1}{4}}$

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^3 \times x \times 4 \times \dfrac{1}{4}}$

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^3 \times 4 \times x \times \dfrac{1}{4}}$

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^12 \times \dfrac{x \times 1}{4}}$

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^12 \times \dfrac{x}{4}}$

According to the power rule of exponents, the product of exponents of a quantity can be written as a power of a quantity in exponential notation.

$\,\,\,=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^\dfrac{x}{4}}\Bigg)^12}$

### Evaluate the Limit of the function by rules

The simplification process for the given function in exponential notation is completed and it is time to find its limit as the value of $x$ is closer to infinity.

$\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(\Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^\dfrac{x}{4}}\Bigg)^12}$

Use the basic exponential limit rule to find the limit of the exponential function.

$\,\,\,=\,\,\,$ $\Bigg(\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^\dfrac{x}{4}}\Bigg)^12}$

Suppose $y \,=\, \dfrac{x}{4}$, then convert the whole function in terms $y$.

If $x \,\to\, \infty$, then $\dfrac{x}{4} \,\to\, \dfrac{\infty}{4}$. Therefore, $\dfrac{x}{4} \,\to\, \infty$ but we have assumed that $y \,=\, \dfrac{x}{4}$. Hence, $y \,\to\, \infty$. It revealed that when the value of $x$ approaches to infinity, the value of $y$ also closer to infinity.

$\implies$ $\Bigg(\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \Bigg(1+\dfrac{1}{\Big(\dfrac{x}{4}\Big)}\Bigg)^\dfrac{x}{4}}\Bigg)^12}$ $\,=\,$ $\Bigg(\displaystyle \large \lim_{y \,\to\, \infty}{\normalsize \bigg(1+\dfrac{1}{y}\bigg)^y}\Bigg)^12}$

The expression in terms of $x$ is successfully converted into the expression in terms of $y$. It is time to evaluate the limit of the function in terms of $y$.

$\Bigg(\displaystyle \large \lim_{y \,\to\, \infty}{\normalsize \bigg(1+\dfrac{1}{y}\bigg)^y}\Bigg)^12}$

According to the limit of 1 plus 1 by x whole power x as x approaches infinity rule, the limit of $1$ plus $1$ by $y$ whole power of $y$ as $y$ closer to infinity is equal to mathematical constant $e$.

$\implies$ $\Bigg(\displaystyle \large \lim_{y \,\to\, \infty}{\normalsize \bigg(1+\dfrac{1}{y}\bigg)^y}\Bigg)^12}$ $\,=\,$ $(e)^{12}$

$\,\,\,\therefore\,\,\,\,\,\,$ $\Bigg(\displaystyle \large \lim_{y \,\to\, \infty}{\normalsize \bigg(1+\dfrac{1}{y}\bigg)^y}\Bigg)^12}$ $\,=\,$ $e^{12}$

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.