Math Doubts

Partial Derivative

The derivative of a function of several variables with respect to one of them by considering the remaining variables as constants is called the partial derivative of a function.


Let $f(x, y, z, \cdots)$ is a function in terms of the variables $x, y, z, \cdots$

The partial derivative of the function with respect to variable $x$ is simply denoted as follows.

$(1).\,\,\,$ $f’_{x}$

$(2).\,\,\,$ $\partial_{x}f$

$(3).\,\,\,$ $D_{x}f$

$(4).\,\,\,$ $\dfrac{\partial}{\partial x}\,f$

$(5).\,\,\,$ $\dfrac{\partial f}{\partial x}$


According to the fundamental definition of the derivatives, the partial derivative of the function $f(x, y, z, \cdots)$ with respect to variable $x$ is also written in limit form as follows.

$\dfrac{\partial f(x, y, z, \cdots)}{\partial x}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f(x+\Delta x, y, z, \cdots)-f(x, y, z, \cdots)}{\Delta x}}$

It is simply written as follows.

$\dfrac{\partial f(x, y, z, \cdots)}{\partial x}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f(x+h, y, z, \cdots)-f(x, y, z, \cdots)}{h}}$


Let’s understand the concept of partial derivatives by finding the partial derivative of the function $x^2y$ with respect to $x$. It is expressed in mathematics as follows.

$\dfrac{\partial}{\partial x}{\big(x^2y\big)}$

Actually, the literals $x$ and $y$ are variables but the variable $y$ is considered as a constant, which means the differentiation of the function in terms of $x$ and $y$ is done by considering the variable $y$ as a constant.

$=\,\,\,$ $\dfrac{\partial}{\partial x}{\big(x^2 \times y\big)}$

$=\,\,\,$ $y \times \dfrac{\partial}{\partial x}{\big(x^2\big)}$

$=\,\,\,$ $y \times 2 \times x^{2-1}$

$=\,\,\,$ $y \times 2 \times x^{1}$

$=\,\,\,$ $y \times 2 \times x$

$=\,\,\,$ $2xy$


List of the questions on the partial derivatives with solutions to learn how to find the partial derivative of any function.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved