Math Doubts

Nature of Roots of a Quadratic equation for Negative discriminant

The roots of a quadratic equation are imaginary and distinct if the discriminant of a quadratic equation is negative.


When a quadratic equation is expressed as $ax^2+bx+c = 0$ in algebraic form, the discriminant ($\Delta$ or $D$) of the quadratic equation is written as $b^2-4ac$.

The roots or zeros of the quadratic equation in terms of discriminant are written in the following two forms.

$(1).\,\,\,$ $\dfrac{-b+\sqrt{\Delta}}{2a}$

$(2).\,\,\,$ $\dfrac{-b-\sqrt{\Delta}}{2a}$

If the discriminant of the quadratic equation is negative, then the square root of the discriminant will be undefined. However, the square of a negative quantity can be expressed by an imaginary quantity.

For example $\sqrt{\Delta} \,=\, id$

Now, the zeros or roots of the quadratic equation can be written in the following form.

$(1).\,\,\,$ $\dfrac{-b+id}{2a}$

$(2).\,\,\,$ $\dfrac{-b-id}{2a}$

The two roots clearly reveal that the zeros or roots of the quadratic equation are distinct and imaginary.


$5x^2+7x+6 = 0$

Evaluate the discriminant of this quadratic equation.

$\Delta \,=\, 7^2-4 \times 5 \times 6$

$\implies$ $\Delta \,=\, 49-120$

$\implies$ $\Delta \,=\, -71$

Similarly, find the square root of the discriminant.

$\implies$ $\sqrt{\Delta} \,=\, \sqrt{-71}$

$\implies$ $\sqrt{\Delta} \,=\, i\sqrt{71}$

The zeros or roots of the given quadratic equation are given here.

$\,\,\, \therefore \,\,\,\,\,\,$ $x \,=\, \dfrac{-7+i\sqrt{71}}{10}$ and $x \,=\, \dfrac{-7-i\sqrt{71}}{10}$

Therefore, it is proved that the roots are distinct and complex roots if the discriminant of quadratic equation is less than zero.

Math Doubts
Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more