Math Doubts

Nature of Roots of a Quadratic equation for Negative discriminant

The roots of a quadratic equation are imaginary and distinct if the discriminant of a quadratic equation is negative.

Introduction

When a quadratic equation is expressed as $ax^2+bx+c = 0$ in algebraic form, the discriminant ($\Delta$ or $D$) of the quadratic equation is written as $b^2-4ac$.

The roots or zeros of the quadratic equation in terms of discriminant are written in the following two forms.

$(1).\,\,\,$ $\dfrac{-b+\sqrt{\Delta}}{2a}$

$(2).\,\,\,$ $\dfrac{-b-\sqrt{\Delta}}{2a}$

If the discriminant of the quadratic equation is negative, then the square root of the discriminant will be undefined. However, the square of a negative quantity can be expressed by an imaginary quantity.

For example $\sqrt{\Delta} \,=\, id$

Now, the zeros or roots of the quadratic equation can be written in the following form.

$(1).\,\,\,$ $\dfrac{-b+id}{2a}$

$(2).\,\,\,$ $\dfrac{-b-id}{2a}$

The two roots clearly reveal that the zeros or roots of the quadratic equation are distinct and imaginary.

Example

$5x^2+7x+6 = 0$

Evaluate the discriminant of this quadratic equation.

$\Delta \,=\, 7^2-4 \times 5 \times 6$

$\implies$ $\Delta \,=\, 49-120$

$\implies$ $\Delta \,=\, -71$

Similarly, find the square root of the discriminant.

$\implies$ $\sqrt{\Delta} \,=\, \sqrt{-71}$

$\implies$ $\sqrt{\Delta} \,=\, i\sqrt{71}$

The zeros or roots of the given quadratic equation are given here.

$\,\,\, \therefore \,\,\,\,\,\,$ $x \,=\, \dfrac{-7+i\sqrt{71}}{10}$ and $x \,=\, \dfrac{-7-i\sqrt{71}}{10}$

Therefore, it is proved that the roots are distinct and complex roots if the discriminant of quadratic equation is less than zero.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved