Math Doubts

Nature of Roots of a Quadratic Equation for Positive discriminant

The roots of a quadratic equation are real and distinct if the discriminant of a quadratic equation is positive.

Introduction

Algebraically, a quadratic equation is written as $ax^2+bx+c \,=\, 0$ in mathematical form. Now, the discriminant ($\Delta$ or $D$) of this quadratic equation is written as $b^2-4ac$.

The zeros or roots of the quadratic equation in terms of discriminant are written in the following two forms.

$(1).\,\,\,$ $\dfrac{-b+\sqrt{\Delta}}{2a}$

$(2).\,\,\,$ $\dfrac{-b-\sqrt{\Delta}}{2a}$

When the discriminant of the quadratic equation is positive, the square root of the discriminant will be positive too.

For example $\sqrt{\Delta} \,=\, d$

The zeros or roots of the quadratic equation can be expressed in the following two mathematical forms.

$(1).\,\,\,$ $\dfrac{-b+d}{2a}$

$(2).\,\,\,$ $\dfrac{-b-d}{2a}$

The two roots clearly express that the roots of the quadratic equation are real and distinct.

Example

$2x^2+13x+15 = 0$

Let’s evaluate the discriminant of the given quadratic equation.

$\Delta \,=\, 13^2-4 \times 2 \times 15$

$\implies$ $\Delta \,=\, 169-120$

$\implies$ $\Delta \,=\, 49$

Now, find the square root of the discriminant.

$\implies$ $\sqrt{\Delta} \,=\, \sqrt{49}$

$\implies$ $\sqrt{\Delta} \,=\, 7$

We can now evaluate the roots for the given quadratic equation.

$(1).\,\,\,$ $\dfrac{-13+7}{2 \times 2}$ $\,=\,$ $\dfrac{-6}{4}$ $\,=\,$ $-\dfrac{3}{2}$

$(2).\,\,\,$ $\dfrac{-13-7}{2 \times 2}$ $\,=\,$ $\dfrac{-20}{4}$ $\,=\,$ $-5$

$\,\,\, \therefore \,\,\,\,\,\,$ $x \,=\, -\dfrac{3}{2}$ and $x \,=\, -5$

It is proved that the roots are distinct and also real numbers when the discriminant of quadratic equation is greater than zero.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved