When the product of two quantities equals to one, one quantity is called a multiplicative inverse (or reciprocal) of another quantity.

The quantities are often involved in multiplication in mathematics. In a special case, the product of two quantities is equal to one. It is possible when a quantity is in opposite form in another quantity.

- In some cases, the meaning of opposite is expressed by a word “inverse” in mathematics.
- The product of two quantities equals to one is actually calculated by the multiplication.

According to these two considerable factors, one quantity is called a multiplicative inverse of the remaining quantity.

For example, $6$ and $\dfrac{1}{6}$ are two quantities and multiply them to get their product.

$6 \times \dfrac{1}{6}$

$=\,\,\,$ $\dfrac{6}{1} \times \dfrac{1}{6}$

$=\,\,\,$ $\dfrac{6 \times 1}{1 \times 6}$

$=\,\,\,$ $\dfrac{6}{6}$

$=\,\,\,$ $\dfrac{\cancel{6}}{\cancel{6}}$

$=\,\,\,$ $1$

Therefore, it is cleared that the product of a quantity and quotient of one by the same quantity is equal to one.

$\therefore\,\,\,$ $6 \times \dfrac{1}{6}$ $\,=\,$ $1$

Therefore, the number $\dfrac{1}{6}$ is called the multiplicative inverse or reciprocal of the number $6$ and vice-versa.

Let $x$ be a variable and it represents a quantity. The second quantity is unknown. So, it can be denoted by a variable $y$. Assume that the product of both variables is equal to one.

$x \times y \,=\, 1$

Now, we can evaluate the variable $y$ in terms of $x$.

$\implies$ $y \,=\, \dfrac{1}{x}$

Therefore, the variable $y$ is equal to the quotient of one by $x$.

$(1).\,\,\,$ $\dfrac{1}{x}$ is called the multiplicative inverse of $x$.

$(2).\,\,\,$ $x$ is called the reciprocal of the $\dfrac{1}{x}$

Remember that, $\dfrac{1}{x}$ is simply written as $x^{-1}$ in mathematics.

Latest Math Topics

Nov 11, 2022

Nov 03, 2022

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved