A mathematical operation of multiplying a matrix by another matrix is called the multiplication of the matrices.

In matrices, the entries (or elements) are arranged in rows and columns. It confuses us how to multiply two or more matrices mathematically when the matrices participate in multiplication. However, there is a systematic procedure for multiplying the matrices. So, let’s learn how to multiply the matrices in mathematics.

The multiplication of the matrices is possible if the total number of elements in a row of the first matrix is equal to the total number of entries in a column of the second matrix.

$A \,=\, \big[a_{ij}\big]_{m \times r}$ and $B \,=\, \big[b_{ij}\big]_{r \times n}$

$A$ and $B$ are two matrices. The matrix $A$ is a matrix of the order $m \times r$ and the matrix $B$ is a matrix of the order $r \times n$. The $a_{ij}$ and $b_{ij}$ represent each entry in the matrices $A$ and $B$ respectively. Here, $i$ and $j$ represent “the number of the row” and “the number of the column” of the element.

The multiplication of the matrices is written in mathematics as follows.

$\implies$ $A \times B$ $\,=\,$ $\big[a_{ij}\big]_{m \times r}$ $\times$ $\big[b_{ij}\big]_{r \times n}$

Let’s assume that C is a matrix, which represents the product of the matrices $A$ and $B$.

$\,\,\,\therefore\,\,\,\,\,\,$ $C$ $\,=\,$ $\big[c_{ij}\big]_{m \times n}$

The number of rows in the matrix $C$ is equal to the number of the rows of the matrix $A$. Similarly, the number of columns in the matrix $C$ is equal to the number of the columns of the matrix $B$. Hence, the product of the matrices $A$ and $B$ is the matrix $C$ of the order $m \times n$.

This algebraic analysis can be understood much clear in the below examples section.

There are two simple steps for multiplying the matrices in mathematics.

- Multiply the entries in each column of the second matrix by the elements in every row of the first matrix respectively.
- Add the products of the entries to evaluate the elements for the matrix that represents the multiplication of the matrices.

Let’s learn how to multiply the matrices from the following two examples.

$(1).\,\,\,$ ${\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 5 & 6 \\ 7 & 8 \\ \end{bmatrix}}$

$\implies$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix}$ $\times$ $\begin{bmatrix} 5 & 6 \\ 7 & 8 \\ \end{bmatrix}$ $\,=\,$ $\begin{bmatrix} 1 \times 5+2 \times 7 & 1 \times 6+2 \times 8 \\ 3 \times 5+4 \times 7 & 3 \times 6+4 \times 8 \\ \end{bmatrix}$ $\,=\,$ $\begin{bmatrix} 5+14 & 6+16 \\ 15+28 & 18+32 \\ \end{bmatrix}$

$\,\,\,\therefore\,\,\,\,\,\,$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix}$ $\times$ $\begin{bmatrix} 5 & 6 \\ 7 & 8 \\ \end{bmatrix}$ $\,=\,$ $\begin{bmatrix} 19 & 22 \\ 43 & 50 \\ \end{bmatrix}$

The order of each multiplying matrix is $2$ in this example. Hence, the order of their product matrix is also $2 \times 2$.

$(2).\,\,\,$ ${\begin{bmatrix} 1 & 2 & 3 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 4 & 5 \\ 6 & 7 \\ 8 & 9 \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} 1 & 2 & 3 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 4 & 5 \\ 6 & 7 \\ 8 & 9 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} 1 \times 4+2 \times 6+3 \times 8 & 1 \times 5+2 \times 7+3 \times 9\\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} 1 & 2 & 3 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 4 & 5 \\ 6 & 7 \\ 8 & 9 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} 4+12+24 & 5+14+27\\ \end{bmatrix}}$

$\,\,\,\therefore\,\,\,\,\,\,$ ${\begin{bmatrix} 1 & 2 & 3 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 4 & 5 \\ 6 & 7 \\ 8 & 9 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} 40 & 46\\ \end{bmatrix}}$

The order of the first matrix is $1 \times 3$ and the order of the second matrix is $3 \times 2$. Hence, the order of their product matrix is $1 \times 2$.

List of the practice questions on matrix multiplication with solutions to learn how to multiply the matrices of the same order or different order in mathematics.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.