# Proof of Quotient law of Logarithms

## Formula

$\log_{b}{\Big(\dfrac{m}{n}\Big)}$ $\,=\,$ $\log_{b}{m}-\log_{b}{n}$

The quotient rule is another most useful logarithmic identity, which states that logarithm of quotient of two quotients is equal to difference of their logs. The property of quotient rule can be derived in algebraic form on the basis of relation between exponents and logarithms, and quotient rule of exponents.

### Express quantities in Exponential form

$m$ and $n$ are two quantities, and express both quantities in product form on the basis of another quantity $b$.

The total multiplying factors of $b$ is $x$ and the product of them is equal to $m$.

$m$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_x \, factors$

$\implies m \,=\, b^x$

In the same way, the total multiplying factors of $b$ is $y$ and the product of them is equal to $n$.

$n$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_y \, factors$

$\implies n \,=\, b^y$

Thus, the two quantities are written in exponential notation as follows.

$(1) \,\,\,\,\,\,$ $m \,=\, b^x$

$(2) \,\,\,\,\,\,$ $n \,=\, b^y$

### Write quantities in logarithmic form

On the basis of mathematical relation between exponents and logarithms, the quantities in exponential form can be written in logarithmic form as follows.

$(1) \,\,\,\,\,\,$ $b^x} \,=\,$ $\,\, \Leftrightarrow \,\,$ $\log_{b}{m} = x$

$(2) \,\,\,\,\,\,$ $b^y} \,=\,$ $\,\,\,\, \Leftrightarrow \,\,$ $\log_{b}{n} = y$

### Quotient of the quantities by division

Divide the quantity $m$ by $n$ to get the quotient of them mathematically.

$\dfrac{m}{n}$

Actually, the values of the quantities $m$ and $n$ in exponential notation are $b^x$ and $b^y$ respectively.

$\implies \dfrac{m}{n} \,=\, \dfrac{b^x}}{b^y}$

According to the quotient rule of exponents, the quotient of exponential terms whose base is same, is equal to the base is raised to the power of difference of exponents.

$\implies \dfrac{m}{n} \,=\, b^{\,(x}\,-\,y})$

### Transform quantity from exponential to logarithm form

Take $d = x-y$ and $q = \dfrac{m}{n}$. Then, write the equation in terms of $d$ and $q$.

$\implies q = b^d$

Now write the equation in log form.

$\implies \log_{b}{q} = d$

Replace the original values of the quantities $d$ and $q$.

$\implies \log_{b}{\Big(\dfrac{m}{n}\Big)} = x-y$

### Get the logarithmic property

The logarithm of quotient of two quantities $m$ and $n$ to the base $b$ is equal to difference of the quantities $x$ and $y$.

In fact, $x \,=\, \log_{b}{m}$ and $y \,=\, \log_{b}{n}$. So, replace them to obtain the property for the quotient rule of logarithms.

$\,\,\, \therefore \,\,\,\,\,\, \log_{b}{\Big(\dfrac{m}{n}\Big)}$ $\,=\,$ $\log_{b}{m}-\log_{b}{n}$

It has proved that the logarithm of quotient of two quantities to a base is equal to difference their logs to the same base. The fundamental law is also called as division rule of logarithms and used as a formula in mathematics.

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.