Math Doubts

Slope of a Straight Line in coordinates form


$m \,=\, \dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}$

The ratio between differences of ordinates and abscissae of any two points on a line is called slope of a straight line.


$\overleftrightarrow{PQ}$ is a straight line with some inclination in Cartesian coordinate system.

slope of straight line in coordinates

The coordinates of $P$ and $Q$ are $(x_{1}, y_{1})$ and $(x_{2}, y_{2})$. Draw a parallel line to horizontal axis from point $P$ and also draw a perpendicular line to same axis from point $Q$. The two lines are intersected at point $R$.

The length of $\overline{QR}$ represents vertical rise of the points $P$ and $Q$ and the length of $\overline{PR}$ represents the horizontal distance between them. The ration between them is called gradient of the straight line and it is denoted by letter $m$.

$m \,=\, \dfrac{Vertical \, Rise}{Horizontal \, Distance}$

$\implies m \,=\, \dfrac{QR}{PR}$

$\implies m \,=\, \dfrac{OQ-OR}{OR-OP}$

$\,\,\, \therefore \,\,\,\,\,\, m \,=\, \dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}$

In this example, $x_{1}$ and $x_{2}$ are called abscissae and $y_{1}$ and $y_{2}$ are called ordinates geometrically.

It is proved that the slope of a straight line in terms of a coordinates is the ratio of differences of ordinates and abscissae of any two points on a line.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved