$\displaystyle \large \lim_{x\,\to\,\pm\infty}{\normalsize \dfrac{1}{x}}$ $\,=\,$ $0$

$\displaystyle \large \lim_{x\,\to\,+\infty}{\normalsize e^x}$ $\,=\,$ $\infty$

$\displaystyle \large \lim_{x\,\to\,-\infty}{\normalsize e^x}$ $\,=\,$ $0$

$\displaystyle \large \lim_{x\,\to\,\pm\infty}{\normalsize \bigg(1+\dfrac{1}{\displaystyle x}\bigg)^x}$ $\,=\,$ $e$

$\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \dfrac{\sin{x}}{x}}$ $\,=\,$ $0$

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved