$\displaystyle \large \lim_{x\,\to\,\pm\infty}{\normalsize \dfrac{1}{x}}$ $\,=\,$ $0$
$\displaystyle \large \lim_{x\,\to\,+\infty}{\normalsize e^x}$ $\,=\,$ $\infty$
$\displaystyle \large \lim_{x\,\to\,-\infty}{\normalsize e^x}$ $\,=\,$ $0$
$\displaystyle \large \lim_{x\,\to\,\pm\infty}{\normalsize \bigg(1+\dfrac{1}{\displaystyle x}\bigg)^x}$ $\,=\,$ $e$
$\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \dfrac{\sin{x}}{x}}$ $\,=\,$ $0$
A best free mathematics education website that helps students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
A math help place with list of solved problems with answers and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved