Math Doubts

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

The value of the algebraic function is infinity as $x$ approaches infinity. So, an alternate mathematical approach should be used to solve this limit problem.

Use Rationalization method

Multiply and divide the function $\sqrt{x^2+x+1}-\sqrt{x^2+1}$ by its conjugate function.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize {(\sqrt{x^2+x+1}-\sqrt{x^2+1})}$ $\times$ $\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Multiply conjugate functions

Use expansion of (a+b)(a-b) identity to multiply the conjugate functions mathematically.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1}-\sqrt{x^2+1})}{(\sqrt{x^2+x+1}+\sqrt{x^2+1})}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1})}^2-{(\sqrt{x^2+1})}^2}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Simplify the Limit of the function

Now simplify the limit of the function to the maximum level.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{(x^2+x+1)-(x^2+1)}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x^2+x+1-x^2-1}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \dfrac{\cancel{x^2}+x+\cancel{1}-\cancel{x^2}-\cancel{1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Express the function in reciprocal form for simplifying the function further.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{1}{\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{x}+\dfrac{\sqrt{x^2+1}}{x}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{\sqrt{x^2}}+\dfrac{\sqrt{x^2+1}}{\sqrt{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2+x+1}{x^2}}+\sqrt{\dfrac{x^2+1}{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}\Bigg]}$

Use quotient rule of exponents for simplifying the function to the final level.

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \Bigg[\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{\cancel{x}}{\cancel{x^2}}+\dfrac{1}{x^2}}+\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{1}{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{1+\dfrac{1}{x}+\dfrac{1}{x^2}}+\sqrt{1+\dfrac{1}{x^2}}\Bigg]}$

Evaluate the function

Find the value of the function as $x$ approaches infinity.

$= \dfrac{1}{\sqrt{1+\dfrac{1}{\infty}+\dfrac{1}{{(\infty)}^2}}+\sqrt{1+\dfrac{1}{{(\infty)}^2}}}$

$= \dfrac{1}{\sqrt{1+0+0}+\sqrt{1+0}}$

$= \dfrac{1}{1+1}$

$= \dfrac{1}{2}$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved