Math Doubts

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

The value of the algebraic function is infinity as $x$ approaches infinity. So, an alternate mathematical approach should be used to solve this limit problem.

Use Rationalization method

Multiply and divide the function $\sqrt{x^2+x+1}-\sqrt{x^2+1}$ by its conjugate function.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize {(\sqrt{x^2+x+1}-\sqrt{x^2+1})}$ $\times$ $\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Multiply conjugate functions

Use expansion of (a+b)(a-b) identity to multiply the conjugate functions mathematically.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1}-\sqrt{x^2+1})}{(\sqrt{x^2+x+1}+\sqrt{x^2+1})}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1})}^2-{(\sqrt{x^2+1})}^2}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Simplify the Limit of the function

Now simplify the limit of the function to the maximum level.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{(x^2+x+1)-(x^2+1)}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x^2+x+1-x^2-1}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \dfrac{\cancel{x^2}+x+\cancel{1}-\cancel{x^2}-\cancel{1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Express the function in reciprocal form for simplifying the function further.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{1}{\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{x}+\dfrac{\sqrt{x^2+1}}{x}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{\sqrt{x^2}}+\dfrac{\sqrt{x^2+1}}{\sqrt{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2+x+1}{x^2}}+\sqrt{\dfrac{x^2+1}{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}\Bigg]}$

Use quotient rule of exponents for simplifying the function to the final level.

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \Bigg[\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{\cancel{x}}{\cancel{x^2}}+\dfrac{1}{x^2}}+\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{1}{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{1+\dfrac{1}{x}+\dfrac{1}{x^2}}+\sqrt{1+\dfrac{1}{x^2}}\Bigg]}$

Evaluate the function

Find the value of the function as $x$ approaches infinity.

$= \dfrac{1}{\sqrt{1+\dfrac{1}{\infty}+\dfrac{1}{{(\infty)}^2}}+\sqrt{1+\dfrac{1}{{(\infty)}^2}}}$

$= \dfrac{1}{\sqrt{1+0+0}+\sqrt{1+0}}$

$= \dfrac{1}{1+1}$

$= \dfrac{1}{2}$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved