Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

The value of the algebraic function is infinity as $x$ approaches infinity. So, an alternate mathematical approach should be used to solve this limit problem.

Use Rationalization method

Multiply and divide the function $\sqrt{x^2+x+1}-\sqrt{x^2+1}$ by its conjugate function.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize {(\sqrt{x^2+x+1}-\sqrt{x^2+1})}$ $\times$ $\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Multiply conjugate functions

Use expansion of (a+b)(a-b) identity to multiply the conjugate functions mathematically.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1}-\sqrt{x^2+1})}{(\sqrt{x^2+x+1}+\sqrt{x^2+1})}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1})}^2-{(\sqrt{x^2+1})}^2}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Simplify the Limit of the function

Now simplify the limit of the function to the maximum level.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{(x^2+x+1)-(x^2+1)}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x^2+x+1-x^2-1}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \dfrac{\cancel{x^2}+x+\cancel{1}-\cancel{x^2}-\cancel{1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$

Express the function in reciprocal form for simplifying the function further.

$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{1}{\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{x}+\dfrac{\sqrt{x^2+1}}{x}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{\sqrt{x^2}}+\dfrac{\sqrt{x^2+1}}{\sqrt{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2+x+1}{x^2}}+\sqrt{\dfrac{x^2+1}{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}\Bigg]}$

Use quotient rule of exponents for simplifying the function to the final level.

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \Bigg[\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{\cancel{x}}{\cancel{x^2}}+\dfrac{1}{x^2}}+\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{1}{x^2}}\Bigg]}$

$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{1+\dfrac{1}{x}+\dfrac{1}{x^2}}+\sqrt{1+\dfrac{1}{x^2}}\Bigg]}$

Evaluate the function

Find the value of the function as $x$ approaches infinity.

$= \dfrac{1}{\sqrt{1+\dfrac{1}{\infty}+\dfrac{1}{{(\infty)}^2}}+\sqrt{1+\dfrac{1}{{(\infty)}^2}}}$

$= \dfrac{1}{\sqrt{1+0+0}+\sqrt{1+0}}$

$= \dfrac{1}{1+1}$

$= \dfrac{1}{2}$

Latest Math Topics
Jun 26, 2023

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.