The value of the algebraic function is infinity as $x$ approaches infinity. So, an alternate mathematical approach should be used to solve this limit problem.
Multiply and divide the function $\sqrt{x^2+x+1}-\sqrt{x^2+1}$ by its conjugate function.
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize {(\sqrt{x^2+x+1}-\sqrt{x^2+1})}$ $\times$ $\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
Use expansion of (a+b)(a-b) identity to multiply the conjugate functions mathematically.
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1}-\sqrt{x^2+1})}{(\sqrt{x^2+x+1}+\sqrt{x^2+1})}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1})}^2-{(\sqrt{x^2+1})}^2}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
Now simplify the limit of the function to the maximum level.
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{(x^2+x+1)-(x^2+1)}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x^2+x+1-x^2-1}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \dfrac{\cancel{x^2}+x+\cancel{1}-\cancel{x^2}-\cancel{1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
Express the function in reciprocal form for simplifying the function further.
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{1}{\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{x}+\dfrac{\sqrt{x^2+1}}{x}\Bigg]}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{\sqrt{x^2}}+\dfrac{\sqrt{x^2+1}}{\sqrt{x^2}}\Bigg]}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2+x+1}{x^2}}+\sqrt{\dfrac{x^2+1}{x^2}}\Bigg]}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}\Bigg]}$
Use quotient rule of exponents for simplifying the function to the final level.
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \Bigg[\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{\cancel{x}}{\cancel{x^2}}+\dfrac{1}{x^2}}+\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{1}{x^2}}\Bigg]}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{1+\dfrac{1}{x}+\dfrac{1}{x^2}}+\sqrt{1+\dfrac{1}{x^2}}\Bigg]}$
Find the value of the function as $x$ approaches infinity.
$= \dfrac{1}{\sqrt{1+\dfrac{1}{\infty}+\dfrac{1}{{(\infty)}^2}}+\sqrt{1+\dfrac{1}{{(\infty)}^2}}}$
$= \dfrac{1}{\sqrt{1+0+0}+\sqrt{1+0}}$
$= \dfrac{1}{1+1}$
$= \dfrac{1}{2}$
A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.
Copyright © 2012 - 2025 Math Doubts, All Rights Reserved