The value of the algebraic function is infinity as $x$ approaches infinity. So, an alternate mathematical approach should be used to solve this limit problem.
Multiply and divide the function $\sqrt{x^2+x+1}-\sqrt{x^2+1}$ by its conjugate function.
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize {(\sqrt{x^2+x+1}-\sqrt{x^2+1})}$ $\times$ $\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
Use expansion of (a+b)(a-b) identity to multiply the conjugate functions mathematically.
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1}-\sqrt{x^2+1})}{(\sqrt{x^2+x+1}+\sqrt{x^2+1})}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{{(\sqrt{x^2+x+1})}^2-{(\sqrt{x^2+1})}^2}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
Now simplify the limit of the function to the maximum level.
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{(x^2+x+1)-(x^2+1)}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x^2+x+1-x^2-1}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \dfrac{\cancel{x^2}+x+\cancel{1}-\cancel{x^2}-\cancel{1}}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{x}{\sqrt{x^2+x+1}+\sqrt{x^2+1}}$
Express the function in reciprocal form for simplifying the function further.
$= \displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{1}{\dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \dfrac{\sqrt{x^2+x+1}+\sqrt{x^2+1}}{x}}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{x}+\dfrac{\sqrt{x^2+1}}{x}\Bigg]}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\dfrac{\sqrt{x^2+x+1}}{\sqrt{x^2}}+\dfrac{\sqrt{x^2+1}}{\sqrt{x^2}}\Bigg]}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2+x+1}{x^2}}+\sqrt{\dfrac{x^2+1}{x^2}}\Bigg]}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}\Bigg]}$
Use quotient rule of exponents for simplifying the function to the final level.
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \require{cancel} \Bigg[\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{\cancel{x}}{\cancel{x^2}}+\dfrac{1}{x^2}}+\sqrt{\dfrac{\cancel{x^2}}{\cancel{x^2}}+\dfrac{1}{x^2}}\Bigg]}$
$= \dfrac{1}{\displaystyle \large \lim_{x \,\to\, \infty} \normalsize \Bigg[\sqrt{1+\dfrac{1}{x}+\dfrac{1}{x^2}}+\sqrt{1+\dfrac{1}{x^2}}\Bigg]}$
Find the value of the function as $x$ approaches infinity.
$= \dfrac{1}{\sqrt{1+\dfrac{1}{\infty}+\dfrac{1}{{(\infty)}^2}}+\sqrt{1+\dfrac{1}{{(\infty)}^2}}}$
$= \dfrac{1}{\sqrt{1+0+0}+\sqrt{1+0}}$
$= \dfrac{1}{1+1}$
$= \dfrac{1}{2}$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved