In calculus, the limits of some functions become indeterminate. For solving the limits of such functions, the L’Hospital’s Rule is used. Here is the list of limit problems with easily understandable solutions to learn how to find the limits of the functions by the L’Hopital’s Rule.

Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{1-\cos{mx}}{1-\cos{nx}}}$

Find $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{e^{3\normalsize +\large x}-\sin{x}-e^3}{x}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 3}{\normalsize \dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}}$

Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\log_{\displaystyle e}{\big(\cos{(\sin{x})}\big)}}{x^2}}$

Latest Math Topics

Apr 18, 2022

Apr 14, 2022

Apr 05, 2022

Mar 18, 2022

Mar 05, 2022

Latest Math Problems

Apr 06, 2022

Mar 22, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved