# Proof of Sum rule of Integration

Let $f(x)$, $g(x)$, $u(x)$ and $v(x)$ represent four functions in $x$, and also $c_1$ and $c_2$ are constants. Now, let’s derive the formula for integral sum rule in mathematical form by the relation between differentiation and integration in integral calculus.

### Relation between Derivative & Integrals of functions

Add a constant $c_1$ to the function $u(x)$, then the sum of them can be written as expression $u(x)+c_1$. Let $f(x)$ be the derivative of the mathematical expression $u(x)+c_1$. The relationship between them can be written in mathematical form by the differentiation.

$\dfrac{d}{dx}{\, \Big(u(x)+c_1\Big)} \,=\, f(x)$

According to the integral calculus, the function $u(x)$ is called a primitive or anti-derivative of function $f(x)$ and $c_1$ is called the constant of integration. It can be written in mathematical form by the indefinite integration.

$\implies$ $\displaystyle \int{f(x) \,}dx \,=\, u(x)+c_1$

$\,\,\, \therefore \,\,\,\,\,\,$ $u(x)+c_1 \,=\, \displaystyle \int{f(x) \,}dx$

Similarly, add a constant $c_2$ to the function $v(x)$. Now, the addition of them is written as an expression $v(x)+c_2$. Assume, the derivative of expression $v(x)+c_2$ is equal to $g(x)$. It can be written mathematically by the differential calculus.

$\dfrac{d}{dx}{\, \Big(v(x)+c_2\Big)} \,=\, g(x)$

As per integral calculus, the function $v(x)$ is called the integral of $g(x)$ with respect to $x$ and $c_2$ is called a constant of integration. The relationship between them can be written mathematically by the integration.

$\implies$ $\displaystyle \int{g(x) \,}dx \,=\, v(x)+c_2$

$\,\,\, \therefore \,\,\,\,\,\,$ $v(x)+c_1 \,=\, \displaystyle \int{g(x) \,}dx$

### Relation between Derivative & Integrals of sum

Now, add both mathematical expressions and evaluate its derivative.

$\implies$ $\dfrac{d}{dx}{\, \Big[\Big(u(x)+c_1+v(x)+c_2\Big)\Big]}$ $\,=\,$ $\dfrac{d}{dx}{\, \Big[\Big(u(x)+c_1\Big)+\Big(v(x)+c_2\Big)\Big]}$

The derivative of sum is equal to sum of their derivatives as per sum rule of differentiation.

$\implies$ $\dfrac{d}{dx}{\, \Big[\Big(u(x)+c_1+v(x)+c_2\Big)\Big]}$ $\,=\,$ $\dfrac{d}{dx}{\,\Big(u(x)+c_1\Big)}$ $+$ $\dfrac{d}{dx}{\, \Big(v(x)+c_2\Big)}$

In the first step, we have assumed that the derivatives of the expressions $u(x)+c_1$ and $v(x)+c_2$ are $f(x)$ and $g(x)$ respectively.

$\implies$ $\dfrac{d}{dx}{\, \Big[\Big(u(x)+c_1+v(x)+c_2\Big)\Big]}$ $\,=\,$ $f(x)+g(x)$

As per the relationship between differentiation and integration, the mathematical expression in differential form can be written integral form.

$\implies$ $\displaystyle \int{\Big(f(x)+g(x)\Big)\,}dx$ $\,=\,$ $u(x)+c_1$ $+$ $v(x)+c_2$

### Proving the Addition rule of Integration

In first step, we have derived that

$(1)\,\,\,$ $u(x)+c_1 \,=\, \displaystyle \int{f(x)\,}dx$

$(2)\,\,\,$ $v(x)+c_2 \,=\, \displaystyle \int{g(x)\,}dx$

Now, replace the values of expressions $u(x)+c_1$ and $v(x)+c_2$ in the above equation.

$\,\,\,\therefore\,\,\,\,\,\,$ $\displaystyle \int{\Big(f(x)+g(x)\Big)\,}dx$ $\,=\,$ $\displaystyle \int{f(x) \,}dx$ $+$ $\displaystyle \int{g(x) \,}dx$

Therefore, it is proved that the indefinite integral of sum of functions is equal to sum of their integrals, and it is called as the sum rule of integration.

Latest Math Topics
Jun 26, 2023

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.