Math Doubts

Integral of secx.tanx formula

Formula

$\displaystyle \int{\sec{x}\tan{x} \,}dx \,=\, \sec{x}+c$

Introduction

Take, $x$ as a variable, and represents an angle of a right triangle. The secant and tangent functions are written in terms of $x$ as $\sec{x}$ and $\tan{x}$ respectively. The indefinite integral of product of $\sec{x}$ and $\tan{x}$ functions with respect to $x$ is written in integral calculus as follows.

$\displaystyle \int{\sec{x}\tan{x} \,} dx$

The integration of product of secant and tan functions with respect to $x$ is equal to the sum of secant function and the constant of integration.

$\displaystyle \int{\sec{x}\tan{x} \,}dx \,=\, \sec{x}+c$

Alternative forms

The indefinite integral of product of secant and tan functions formula can be written in terms of any variable in calculus.

$(1) \,\,\,$ $\displaystyle \int{\sec{(j)}\tan{(j)} \,}dj \,=\, \sec{(j)}+c$

$(2) \,\,\,$ $\displaystyle \int{\sec{(q)}\tan{(q)} \,}dq \,=\, \sec{(q)}+c$

$(3) \,\,\,$ $\displaystyle \int{\sec{(y)}\tan{(y)} \,}dy \,=\, \sec{(y)}+c$

Proof

Learn how to derive the integration rule for the product of secant and tangent functions in integral calculus.

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more