$\displaystyle \int{\sec^2{x} \,}dx \,=\, \tan{x}+c$

Assume, $x$ is a variable, which is also used to represent an angle of a right triangle. Now, the square of the secant of angle $x$ is written as $\sec^2{x}$ and the indefinite integral of $\sec^2{x}$ function with respect to $x$ is written in the following mathematical form in integral calculus.

$\displaystyle \int{\sec^2{x} \,} dx$

The integration of secant squared of angle $x$ function with respect to $x$ is equal to sum of the tan of angle $x$ and the constant of integration.

$\displaystyle \int{\sec^2{x} \,}dx \,=\, \tan{x}+c$

The integral of secant squared function formula can be written in terms of any variable.

$(1) \,\,\,$ $\displaystyle \int{\sec^2{(l)} \,} dl \,=\, \tan{(l)}+c$

$(2) \,\,\,$ $\displaystyle \int{\sec^2{(p)} \,} dp \,=\, \tan{(p)}+c$

$(3) \,\,\,$ $\displaystyle \int{\sec^2{(y)} \,} dy \,=\, \tan{(y)}+c$

Learn how to derive the integration of secant squared function rule in integral calculus.

Latest Math Topics

Nov 03, 2022

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved